Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnma1b Unicode version

Theorem 2llnma1b 30597
Description: Generalization of 2llnma1 30598. (Contributed by NM, 26-Apr-2013.)
Hypotheses
Ref Expression
2llnma1b.b  |-  B  =  ( Base `  K
)
2llnma1b.l  |-  .<_  =  ( le `  K )
2llnma1b.j  |-  .\/  =  ( join `  K )
2llnma1b.m  |-  ./\  =  ( meet `  K )
2llnma1b.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
2llnma1b  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  (
( P  .\/  X
)  ./\  ( P  .\/  Q ) )  =  P )

Proof of Theorem 2llnma1b
StepHypRef Expression
1 hllat 30175 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
213ad2ant1 976 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  K  e.  Lat )
3 simp22 989 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  P  e.  A )
4 2llnma1b.b . . . . . . 7  |-  B  =  ( Base `  K
)
5 2llnma1b.a . . . . . . 7  |-  A  =  ( Atoms `  K )
64, 5atbase 30101 . . . . . 6  |-  ( P  e.  A  ->  P  e.  B )
73, 6syl 15 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  P  e.  B )
8 simp21 988 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  X  e.  B )
9 2llnma1b.l . . . . . 6  |-  .<_  =  ( le `  K )
10 2llnma1b.j . . . . . 6  |-  .\/  =  ( join `  K )
114, 9, 10latlej1 14182 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  X  e.  B )  ->  P  .<_  ( P  .\/  X ) )
122, 7, 8, 11syl3anc 1182 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  P  .<_  ( P  .\/  X
) )
13 simp23 990 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  Q  e.  A )
144, 5atbase 30101 . . . . . 6  |-  ( Q  e.  A  ->  Q  e.  B )
1513, 14syl 15 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  Q  e.  B )
164, 9, 10latlej1 14182 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Q  e.  B )  ->  P  .<_  ( P  .\/  Q ) )
172, 7, 15, 16syl3anc 1182 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  P  .<_  ( P  .\/  Q
) )
184, 10latjcl 14172 . . . . . 6  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  X  e.  B )  ->  ( P  .\/  X
)  e.  B )
192, 7, 8, 18syl3anc 1182 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  ( P  .\/  X )  e.  B )
20 simp1 955 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  K  e.  HL )
214, 10, 5hlatjcl 30178 . . . . . 6  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  B )
2220, 3, 13, 21syl3anc 1182 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  ( P  .\/  Q )  e.  B )
23 2llnma1b.m . . . . . 6  |-  ./\  =  ( meet `  K )
244, 9, 23latlem12 14200 . . . . 5  |-  ( ( K  e.  Lat  /\  ( P  e.  B  /\  ( P  .\/  X
)  e.  B  /\  ( P  .\/  Q )  e.  B ) )  ->  ( ( P 
.<_  ( P  .\/  X
)  /\  P  .<_  ( P  .\/  Q ) )  <->  P  .<_  ( ( P  .\/  X ) 
./\  ( P  .\/  Q ) ) ) )
252, 7, 19, 22, 24syl13anc 1184 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  (
( P  .<_  ( P 
.\/  X )  /\  P  .<_  ( P  .\/  Q ) )  <->  P  .<_  ( ( P  .\/  X
)  ./\  ( P  .\/  Q ) ) ) )
2612, 17, 25mpbi2and 887 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  P  .<_  ( ( P  .\/  X )  ./\  ( P  .\/  Q ) ) )
27 hlatl 30172 . . . . 5  |-  ( K  e.  HL  ->  K  e.  AtLat )
28273ad2ant1 976 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  K  e.  AtLat )
29 simp3 957 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  -.  Q  .<_  ( P  .\/  X ) )
30 nbrne2 4057 . . . . . 6  |-  ( ( P  .<_  ( P  .\/  X )  /\  -.  Q  .<_  ( P  .\/  X ) )  ->  P  =/=  Q )
3112, 29, 30syl2anc 642 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  P  =/=  Q )
324, 10latjcl 14172 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  .\/  X )  e.  B  /\  Q  e.  B )  ->  (
( P  .\/  X
)  .\/  Q )  e.  B )
332, 19, 15, 32syl3anc 1182 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  (
( P  .\/  X
)  .\/  Q )  e.  B )
344, 9, 10latlej1 14182 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  .\/  X )  e.  B  /\  Q  e.  B )  ->  ( P  .\/  X )  .<_  ( ( P  .\/  X )  .\/  Q ) )
352, 19, 15, 34syl3anc 1182 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  ( P  .\/  X )  .<_  ( ( P  .\/  X )  .\/  Q ) )
364, 9, 2, 7, 19, 33, 12, 35lattrd 14180 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  P  .<_  ( ( P  .\/  X )  .\/  Q ) )
374, 9, 10, 23, 5cvrat3 30253 . . . . . 6  |-  ( ( K  e.  HL  /\  ( ( P  .\/  X )  e.  B  /\  P  e.  A  /\  Q  e.  A )
)  ->  ( ( P  =/=  Q  /\  -.  Q  .<_  ( P  .\/  X )  /\  P  .<_  ( ( P  .\/  X
)  .\/  Q )
)  ->  ( ( P  .\/  X )  ./\  ( P  .\/  Q ) )  e.  A ) )
38373impia 1148 . . . . 5  |-  ( ( K  e.  HL  /\  ( ( P  .\/  X )  e.  B  /\  P  e.  A  /\  Q  e.  A )  /\  ( P  =/=  Q  /\  -.  Q  .<_  ( P 
.\/  X )  /\  P  .<_  ( ( P 
.\/  X )  .\/  Q ) ) )  -> 
( ( P  .\/  X )  ./\  ( P  .\/  Q ) )  e.  A )
3920, 19, 3, 13, 31, 29, 36, 38syl133anc 1205 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  (
( P  .\/  X
)  ./\  ( P  .\/  Q ) )  e.  A )
409, 5atcmp 30123 . . . 4  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  (
( P  .\/  X
)  ./\  ( P  .\/  Q ) )  e.  A )  ->  ( P  .<_  ( ( P 
.\/  X )  ./\  ( P  .\/  Q ) )  <->  P  =  (
( P  .\/  X
)  ./\  ( P  .\/  Q ) ) ) )
4128, 3, 39, 40syl3anc 1182 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  ( P  .<_  ( ( P 
.\/  X )  ./\  ( P  .\/  Q ) )  <->  P  =  (
( P  .\/  X
)  ./\  ( P  .\/  Q ) ) ) )
4226, 41mpbid 201 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  P  =  ( ( P 
.\/  X )  ./\  ( P  .\/  Q ) ) )
4342eqcomd 2301 1  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  (
( P  .\/  X
)  ./\  ( P  .\/  Q ) )  =  P )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   joincjn 14094   meetcmee 14095   Latclat 14167   Atomscatm 30075   AtLatcal 30076   HLchlt 30162
This theorem is referenced by:  2llnma1  30598  cdlemg4  31428  cdlemkfid1N  31732
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163
  Copyright terms: Public domain W3C validator