Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnmeqat Unicode version

Theorem 2llnmeqat 30382
Description: An atom equals the intersection of two majorizing lines. (Contributed by NM, 3-Apr-2013.)
Hypotheses
Ref Expression
2llnmeqat.l  |-  .<_  =  ( le `  K )
2llnmeqat.m  |-  ./\  =  ( meet `  K )
2llnmeqat.a  |-  A  =  ( Atoms `  K )
2llnmeqat.n  |-  N  =  ( LLines `  K )
Assertion
Ref Expression
2llnmeqat  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  P  =  ( X  ./\  Y ) )

Proof of Theorem 2llnmeqat
StepHypRef Expression
1 simp3r 984 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  P  .<_  ( X  ./\  Y
) )
2 hlatl 30172 . . . 4  |-  ( K  e.  HL  ->  K  e.  AtLat )
323ad2ant1 976 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  K  e.  AtLat )
4 simp23 990 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  P  e.  A )
5 simp1 955 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  K  e.  HL )
6 simp21 988 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  X  e.  N )
7 simp22 989 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  Y  e.  N )
8 simp3l 983 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  X  =/=  Y )
9 hllat 30175 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
1093ad2ant1 976 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  K  e.  Lat )
11 eqid 2296 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
12 2llnmeqat.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
1311, 12atbase 30101 . . . . . . . 8  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
144, 13syl 15 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  P  e.  ( Base `  K
) )
15 2llnmeqat.n . . . . . . . . 9  |-  N  =  ( LLines `  K )
1611, 15llnbase 30320 . . . . . . . 8  |-  ( X  e.  N  ->  X  e.  ( Base `  K
) )
176, 16syl 15 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  X  e.  ( Base `  K
) )
1811, 15llnbase 30320 . . . . . . . 8  |-  ( Y  e.  N  ->  Y  e.  ( Base `  K
) )
197, 18syl 15 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  Y  e.  ( Base `  K
) )
20 2llnmeqat.l . . . . . . . 8  |-  .<_  =  ( le `  K )
21 2llnmeqat.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
2211, 20, 21latlem12 14200 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) ) )  -> 
( ( P  .<_  X  /\  P  .<_  Y )  <-> 
P  .<_  ( X  ./\  Y ) ) )
2310, 14, 17, 19, 22syl13anc 1184 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  (
( P  .<_  X  /\  P  .<_  Y )  <->  P  .<_  ( X  ./\  Y )
) )
241, 23mpbird 223 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  ( P  .<_  X  /\  P  .<_  Y ) )
25 eqid 2296 . . . . . 6  |-  ( 0.
`  K )  =  ( 0. `  K
)
2620, 21, 25, 12, 152llnm4 30381 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  N  /\  Y  e.  N
)  /\  ( P  .<_  X  /\  P  .<_  Y ) )  ->  ( X  ./\  Y )  =/=  ( 0. `  K
) )
275, 4, 6, 7, 24, 26syl131anc 1195 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  ( X  ./\  Y )  =/=  ( 0. `  K
) )
2821, 25, 12, 152llnmat 30335 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  ( 0.
`  K ) ) )  ->  ( X  ./\ 
Y )  e.  A
)
295, 6, 7, 8, 27, 28syl32anc 1190 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  ( X  ./\  Y )  e.  A )
3020, 12atcmp 30123 . . 3  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  ( X  ./\  Y )  e.  A )  ->  ( P  .<_  ( X  ./\  Y )  <->  P  =  ( X  ./\  Y ) ) )
313, 4, 29, 30syl3anc 1182 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  ( P  .<_  ( X  ./\  Y )  <->  P  =  ( X  ./\  Y ) ) )
321, 31mpbid 201 1  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  P  =  ( X  ./\  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   meetcmee 14095   0.cp0 14159   Latclat 14167   Atomscatm 30075   AtLatcal 30076   HLchlt 30162   LLinesclln 30302
This theorem is referenced by:  cdlemeg46req  31340
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-llines 30309
  Copyright terms: Public domain W3C validator