Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnneN Unicode version

Theorem 2llnneN 29937
Description: Condition implying that two intersecting lines are different. (Contributed by NM, 29-May-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2lnne.l  |-  .<_  =  ( le `  K )
2lnne.j  |-  .\/  =  ( join `  K )
2lnne.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
2llnneN  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
) ) )  -> 
( R  .\/  P
)  =/=  ( R 
.\/  Q ) )

Proof of Theorem 2llnneN
StepHypRef Expression
1 simp1 957 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
) ) )  ->  K  e.  HL )
2 simp21 990 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
) ) )  ->  P  e.  A )
3 simp23 992 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
) ) )  ->  R  e.  A )
4 simp21 990 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  ->  P  e.  A )
5 simp23 992 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  ->  R  e.  A )
6 simp22 991 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  ->  Q  e.  A )
74, 5, 63jca 1134 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  ->  ( P  e.  A  /\  R  e.  A  /\  Q  e.  A ) )
8 2lnne.l . . . . . . . 8  |-  .<_  =  ( le `  K )
9 2lnne.j . . . . . . . 8  |-  .\/  =  ( join `  K )
10 2lnne.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
118, 9, 10hlatexch2 29924 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  R  e.  A  /\  Q  e.  A
)  /\  P  =/=  Q )  ->  ( P  .<_  ( R  .\/  Q
)  ->  R  .<_  ( P  .\/  Q ) ) )
127, 11syld3an2 1231 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  ->  ( P  .<_  ( R  .\/  Q
)  ->  R  .<_  ( P  .\/  Q ) ) )
1312con3d 127 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  ->  ( -.  R  .<_  ( P  .\/  Q )  ->  -.  P  .<_  ( R  .\/  Q
) ) )
14133exp 1152 . . . 4  |-  ( K  e.  HL  ->  (
( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  ->  ( P  =/=  Q  ->  ( -.  R  .<_  ( P  .\/  Q )  ->  -.  P  .<_  ( R  .\/  Q
) ) ) ) )
1514imp4a 573 . . 3  |-  ( K  e.  HL  ->  (
( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  ->  ( ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) )  ->  -.  P  .<_  ( R  .\/  Q ) ) ) )
16153imp 1147 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
) ) )  ->  -.  P  .<_  ( R 
.\/  Q ) )
178, 9, 102llnne2N 29936 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  R  e.  A
)  /\  -.  P  .<_  ( R  .\/  Q
) )  ->  ( R  .\/  P )  =/=  ( R  .\/  Q
) )
181, 2, 3, 16, 17syl121anc 1189 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
) ) )  -> 
( R  .\/  P
)  =/=  ( R 
.\/  Q ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2593   class class class wbr 4199   ` cfv 5440  (class class class)co 6067   lecple 13519   joincjn 14384   Atomscatm 29792   HLchlt 29879
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-rep 4307  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-nel 2596  df-ral 2697  df-rex 2698  df-reu 2699  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-op 3810  df-uni 4003  df-iun 4082  df-br 4200  df-opab 4254  df-mpt 4255  df-id 4485  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-1st 6335  df-2nd 6336  df-undef 6529  df-riota 6535  df-poset 14386  df-plt 14398  df-lub 14414  df-join 14416  df-lat 14458  df-covers 29795  df-ats 29796  df-atl 29827  df-cvlat 29851  df-hlat 29880
  Copyright terms: Public domain W3C validator