Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2lplnj Structured version   Unicode version

Theorem 2lplnj 30318
Description: The join of two different lattice planes in a (3-dimensional) lattice volume equals the volume. (Contributed by NM, 12-Jul-2012.)
Hypotheses
Ref Expression
2lplnj.l  |-  .<_  =  ( le `  K )
2lplnj.j  |-  .\/  =  ( join `  K )
2lplnj.p  |-  P  =  ( LPlanes `  K )
2lplnj.v  |-  V  =  ( LVols `  K )
Assertion
Ref Expression
2lplnj  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  ( X  .\/  Y )  =  W )

Proof of Theorem 2lplnj
Dummy variables  r 
q  s  t  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2435 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
2 2lplnj.l . . . . . . . 8  |-  .<_  =  ( le `  K )
3 2lplnj.j . . . . . . . 8  |-  .\/  =  ( join `  K )
4 eqid 2435 . . . . . . . 8  |-  ( Atoms `  K )  =  (
Atoms `  K )
5 2lplnj.p . . . . . . . 8  |-  P  =  ( LPlanes `  K )
61, 2, 3, 4, 5islpln2 30234 . . . . . . 7  |-  ( K  e.  HL  ->  ( X  e.  P  <->  ( X  e.  ( Base `  K
)  /\  E. q  e.  ( Atoms `  K ) E. r  e.  ( Atoms `  K ) E. s  e.  ( Atoms `  K ) ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r )  /\  X  =  ( ( q 
.\/  r )  .\/  s ) ) ) ) )
7 simpr 448 . . . . . . 7  |-  ( ( X  e.  ( Base `  K )  /\  E. q  e.  ( Atoms `  K ) E. r  e.  ( Atoms `  K ) E. s  e.  ( Atoms `  K ) ( q  =/=  r  /\  -.  s  .<_  ( q 
.\/  r )  /\  X  =  ( (
q  .\/  r )  .\/  s ) ) )  ->  E. q  e.  (
Atoms `  K ) E. r  e.  ( Atoms `  K ) E. s  e.  ( Atoms `  K )
( q  =/=  r  /\  -.  s  .<_  ( q 
.\/  r )  /\  X  =  ( (
q  .\/  r )  .\/  s ) ) )
86, 7syl6bi 220 . . . . . 6  |-  ( K  e.  HL  ->  ( X  e.  P  ->  E. q  e.  ( Atoms `  K ) E. r  e.  ( Atoms `  K ) E. s  e.  ( Atoms `  K ) ( q  =/=  r  /\  -.  s  .<_  ( q 
.\/  r )  /\  X  =  ( (
q  .\/  r )  .\/  s ) ) ) )
91, 2, 3, 4, 5islpln2 30234 . . . . . . 7  |-  ( K  e.  HL  ->  ( Y  e.  P  <->  ( Y  e.  ( Base `  K
)  /\  E. t  e.  ( Atoms `  K ) E. u  e.  ( Atoms `  K ) E. v  e.  ( Atoms `  K ) ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u )  /\  Y  =  ( ( t 
.\/  u )  .\/  v ) ) ) ) )
10 simpr 448 . . . . . . 7  |-  ( ( Y  e.  ( Base `  K )  /\  E. t  e.  ( Atoms `  K ) E. u  e.  ( Atoms `  K ) E. v  e.  ( Atoms `  K ) ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) )  ->  E. t  e.  (
Atoms `  K ) E. u  e.  ( Atoms `  K ) E. v  e.  ( Atoms `  K )
( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) )
119, 10syl6bi 220 . . . . . 6  |-  ( K  e.  HL  ->  ( Y  e.  P  ->  E. t  e.  ( Atoms `  K ) E. u  e.  ( Atoms `  K ) E. v  e.  ( Atoms `  K ) ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) ) )
128, 11anim12d 547 . . . . 5  |-  ( K  e.  HL  ->  (
( X  e.  P  /\  Y  e.  P
)  ->  ( E. q  e.  ( Atoms `  K ) E. r  e.  ( Atoms `  K ) E. s  e.  ( Atoms `  K ) ( q  =/=  r  /\  -.  s  .<_  ( q 
.\/  r )  /\  X  =  ( (
q  .\/  r )  .\/  s ) )  /\  E. t  e.  ( Atoms `  K ) E. u  e.  ( Atoms `  K ) E. v  e.  ( Atoms `  K ) ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) ) ) )
1312imp 419 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P
) )  ->  ( E. q  e.  ( Atoms `  K ) E. r  e.  ( Atoms `  K ) E. s  e.  ( Atoms `  K )
( q  =/=  r  /\  -.  s  .<_  ( q 
.\/  r )  /\  X  =  ( (
q  .\/  r )  .\/  s ) )  /\  E. t  e.  ( Atoms `  K ) E. u  e.  ( Atoms `  K ) E. v  e.  ( Atoms `  K ) ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) ) )
14133adantr3 1118 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V
) )  ->  ( E. q  e.  ( Atoms `  K ) E. r  e.  ( Atoms `  K ) E. s  e.  ( Atoms `  K )
( q  =/=  r  /\  -.  s  .<_  ( q 
.\/  r )  /\  X  =  ( (
q  .\/  r )  .\/  s ) )  /\  E. t  e.  ( Atoms `  K ) E. u  e.  ( Atoms `  K ) E. v  e.  ( Atoms `  K ) ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) ) )
15143adant3 977 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  ( E. q  e.  ( Atoms `  K ) E. r  e.  ( Atoms `  K ) E. s  e.  ( Atoms `  K )
( q  =/=  r  /\  -.  s  .<_  ( q 
.\/  r )  /\  X  =  ( (
q  .\/  r )  .\/  s ) )  /\  E. t  e.  ( Atoms `  K ) E. u  e.  ( Atoms `  K ) E. v  e.  ( Atoms `  K ) ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) ) )
16 simpl33 1040 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/= 
Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  ->  X  =  ( (
q  .\/  r )  .\/  s ) )
17163ad2ant1 978 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  /\  ( u  e.  ( Atoms `  K )  /\  v  e.  ( Atoms `  K ) )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) )  ->  X  =  ( ( q  .\/  r
)  .\/  s )
)
18 simp33 995 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  /\  ( u  e.  ( Atoms `  K )  /\  v  e.  ( Atoms `  K ) )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) )  ->  Y  =  ( ( t  .\/  u
)  .\/  v )
)
1917, 18oveq12d 6091 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  /\  ( u  e.  ( Atoms `  K )  /\  v  e.  ( Atoms `  K ) )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) )  ->  ( X  .\/  Y )  =  ( ( ( q  .\/  r
)  .\/  s )  .\/  ( ( t  .\/  u )  .\/  v
) ) )
20 simp11 987 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  /\  (
q  e.  ( Atoms `  K )  /\  (
r  e.  ( Atoms `  K )  /\  s  e.  ( Atoms `  K )
) )  /\  (
q  =/=  r  /\  -.  s  .<_  ( q 
.\/  r )  /\  X  =  ( (
q  .\/  r )  .\/  s ) ) )  ->  K  e.  HL )
21 simp123 1091 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  /\  (
q  e.  ( Atoms `  K )  /\  (
r  e.  ( Atoms `  K )  /\  s  e.  ( Atoms `  K )
) )  /\  (
q  =/=  r  /\  -.  s  .<_  ( q 
.\/  r )  /\  X  =  ( (
q  .\/  r )  .\/  s ) ) )  ->  W  e.  V
)
2220, 21jca 519 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  /\  (
q  e.  ( Atoms `  K )  /\  (
r  e.  ( Atoms `  K )  /\  s  e.  ( Atoms `  K )
) )  /\  (
q  =/=  r  /\  -.  s  .<_  ( q 
.\/  r )  /\  X  =  ( (
q  .\/  r )  .\/  s ) ) )  ->  ( K  e.  HL  /\  W  e.  V ) )
2322adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/= 
Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  -> 
( K  e.  HL  /\  W  e.  V ) )
24233ad2ant1 978 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  /\  ( u  e.  ( Atoms `  K )  /\  v  e.  ( Atoms `  K ) )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) )  ->  ( K  e.  HL  /\  W  e.  V ) )
25 simp2l 983 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  /\  (
q  e.  ( Atoms `  K )  /\  (
r  e.  ( Atoms `  K )  /\  s  e.  ( Atoms `  K )
) )  /\  (
q  =/=  r  /\  -.  s  .<_  ( q 
.\/  r )  /\  X  =  ( (
q  .\/  r )  .\/  s ) ) )  ->  q  e.  (
Atoms `  K ) )
26 simp2rl 1026 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  /\  (
q  e.  ( Atoms `  K )  /\  (
r  e.  ( Atoms `  K )  /\  s  e.  ( Atoms `  K )
) )  /\  (
q  =/=  r  /\  -.  s  .<_  ( q 
.\/  r )  /\  X  =  ( (
q  .\/  r )  .\/  s ) ) )  ->  r  e.  (
Atoms `  K ) )
27 simp2rr 1027 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  /\  (
q  e.  ( Atoms `  K )  /\  (
r  e.  ( Atoms `  K )  /\  s  e.  ( Atoms `  K )
) )  /\  (
q  =/=  r  /\  -.  s  .<_  ( q 
.\/  r )  /\  X  =  ( (
q  .\/  r )  .\/  s ) ) )  ->  s  e.  (
Atoms `  K ) )
2825, 26, 273jca 1134 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  /\  (
q  e.  ( Atoms `  K )  /\  (
r  e.  ( Atoms `  K )  /\  s  e.  ( Atoms `  K )
) )  /\  (
q  =/=  r  /\  -.  s  .<_  ( q 
.\/  r )  /\  X  =  ( (
q  .\/  r )  .\/  s ) ) )  ->  ( q  e.  ( Atoms `  K )  /\  r  e.  ( Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )
2928adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/= 
Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  -> 
( q  e.  (
Atoms `  K )  /\  r  e.  ( Atoms `  K )  /\  s  e.  ( Atoms `  K )
) )
30293ad2ant1 978 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  /\  ( u  e.  ( Atoms `  K )  /\  v  e.  ( Atoms `  K ) )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) )  ->  ( q  e.  ( Atoms `  K )  /\  r  e.  ( Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )
31 simpl31 1038 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/= 
Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  -> 
q  =/=  r )
32313ad2ant1 978 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  /\  ( u  e.  ( Atoms `  K )  /\  v  e.  ( Atoms `  K ) )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) )  ->  q  =/=  r
)
33 simpl32 1039 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/= 
Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  ->  -.  s  .<_  ( q 
.\/  r ) )
34333ad2ant1 978 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  /\  ( u  e.  ( Atoms `  K )  /\  v  e.  ( Atoms `  K ) )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) )  ->  -.  s  .<_  ( q  .\/  r ) )
3532, 34jca 519 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  /\  ( u  e.  ( Atoms `  K )  /\  v  e.  ( Atoms `  K ) )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) )  ->  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
) ) )
36 simp1r 982 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  /\  ( u  e.  ( Atoms `  K )  /\  v  e.  ( Atoms `  K ) )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) )  ->  t  e.  (
Atoms `  K ) )
37 simp2l 983 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  /\  ( u  e.  ( Atoms `  K )  /\  v  e.  ( Atoms `  K ) )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) )  ->  u  e.  (
Atoms `  K ) )
38 simp2r 984 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  /\  ( u  e.  ( Atoms `  K )  /\  v  e.  ( Atoms `  K ) )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) )  ->  v  e.  (
Atoms `  K ) )
3936, 37, 383jca 1134 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  /\  ( u  e.  ( Atoms `  K )  /\  v  e.  ( Atoms `  K ) )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) )  ->  ( t  e.  ( Atoms `  K )  /\  u  e.  ( Atoms `  K )  /\  v  e.  ( Atoms `  K ) ) )
40 simp31 993 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  /\  ( u  e.  ( Atoms `  K )  /\  v  e.  ( Atoms `  K ) )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) )  ->  t  =/=  u
)
41 simp32 994 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  /\  ( u  e.  ( Atoms `  K )  /\  v  e.  ( Atoms `  K ) )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) )  ->  -.  v  .<_  ( t  .\/  u ) )
4240, 41jca 519 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  /\  ( u  e.  ( Atoms `  K )  /\  v  e.  ( Atoms `  K ) )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) )  ->  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
) ) )
43 simpl13 1034 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/= 
Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  -> 
( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y ) )
44433ad2ant1 978 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  /\  ( u  e.  ( Atoms `  K )  /\  v  e.  ( Atoms `  K ) )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) )  ->  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y ) )
45 breq1 4207 . . . . . . . . . . . . . . . 16  |-  ( X  =  ( ( q 
.\/  r )  .\/  s )  ->  ( X  .<_  W  <->  ( (
q  .\/  r )  .\/  s )  .<_  W ) )
46 neeq1 2606 . . . . . . . . . . . . . . . 16  |-  ( X  =  ( ( q 
.\/  r )  .\/  s )  ->  ( X  =/=  Y  <->  ( (
q  .\/  r )  .\/  s )  =/=  Y
) )
4745, 463anbi13d 1256 . . . . . . . . . . . . . . 15  |-  ( X  =  ( ( q 
.\/  r )  .\/  s )  ->  (
( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y )  <->  ( (
( q  .\/  r
)  .\/  s )  .<_  W  /\  Y  .<_  W  /\  ( ( q 
.\/  r )  .\/  s )  =/=  Y
) ) )
48 breq1 4207 . . . . . . . . . . . . . . . 16  |-  ( Y  =  ( ( t 
.\/  u )  .\/  v )  ->  ( Y  .<_  W  <->  ( (
t  .\/  u )  .\/  v )  .<_  W ) )
49 neeq2 2607 . . . . . . . . . . . . . . . 16  |-  ( Y  =  ( ( t 
.\/  u )  .\/  v )  ->  (
( ( q  .\/  r )  .\/  s
)  =/=  Y  <->  ( (
q  .\/  r )  .\/  s )  =/=  (
( t  .\/  u
)  .\/  v )
) )
5048, 493anbi23d 1257 . . . . . . . . . . . . . . 15  |-  ( Y  =  ( ( t 
.\/  u )  .\/  v )  ->  (
( ( ( q 
.\/  r )  .\/  s )  .<_  W  /\  Y  .<_  W  /\  (
( q  .\/  r
)  .\/  s )  =/=  Y )  <->  ( (
( q  .\/  r
)  .\/  s )  .<_  W  /\  ( ( t  .\/  u ) 
.\/  v )  .<_  W  /\  ( ( q 
.\/  r )  .\/  s )  =/=  (
( t  .\/  u
)  .\/  v )
) ) )
5147, 50sylan9bb 681 . . . . . . . . . . . . . 14  |-  ( ( X  =  ( ( q  .\/  r ) 
.\/  s )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) )  -> 
( ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y )  <->  ( (
( q  .\/  r
)  .\/  s )  .<_  W  /\  ( ( t  .\/  u ) 
.\/  v )  .<_  W  /\  ( ( q 
.\/  r )  .\/  s )  =/=  (
( t  .\/  u
)  .\/  v )
) ) )
5217, 18, 51syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  /\  ( u  e.  ( Atoms `  K )  /\  v  e.  ( Atoms `  K ) )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) )  ->  ( ( X 
.<_  W  /\  Y  .<_  W  /\  X  =/=  Y
)  <->  ( ( ( q  .\/  r ) 
.\/  s )  .<_  W  /\  ( ( t 
.\/  u )  .\/  v )  .<_  W  /\  ( ( q  .\/  r )  .\/  s
)  =/=  ( ( t  .\/  u ) 
.\/  v ) ) ) )
5344, 52mpbid 202 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  /\  ( u  e.  ( Atoms `  K )  /\  v  e.  ( Atoms `  K ) )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) )  ->  ( ( ( q  .\/  r ) 
.\/  s )  .<_  W  /\  ( ( t 
.\/  u )  .\/  v )  .<_  W  /\  ( ( q  .\/  r )  .\/  s
)  =/=  ( ( t  .\/  u ) 
.\/  v ) ) )
54 2lplnj.v . . . . . . . . . . . . 13  |-  V  =  ( LVols `  K )
552, 3, 4, 542lplnja 30317 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  V )  /\  (
q  e.  ( Atoms `  K )  /\  r  e.  ( Atoms `  K )  /\  s  e.  ( Atoms `  K ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
) ) )  /\  ( ( t  e.  ( Atoms `  K )  /\  u  e.  ( Atoms `  K )  /\  v  e.  ( Atoms `  K ) )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u ) ) )  /\  ( ( ( q  .\/  r
)  .\/  s )  .<_  W  /\  ( ( t  .\/  u ) 
.\/  v )  .<_  W  /\  ( ( q 
.\/  r )  .\/  s )  =/=  (
( t  .\/  u
)  .\/  v )
) )  ->  (
( ( q  .\/  r )  .\/  s
)  .\/  ( (
t  .\/  u )  .\/  v ) )  =  W )
5624, 30, 35, 39, 42, 53, 55syl321anc 1206 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  /\  ( u  e.  ( Atoms `  K )  /\  v  e.  ( Atoms `  K ) )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) )  ->  ( ( ( q  .\/  r ) 
.\/  s )  .\/  ( ( t  .\/  u )  .\/  v
) )  =  W )
5719, 56eqtrd 2467 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  /\  ( u  e.  ( Atoms `  K )  /\  v  e.  ( Atoms `  K ) )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) )  ->  ( X  .\/  Y )  =  W )
58573exp 1152 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/= 
Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  -> 
( ( u  e.  ( Atoms `  K )  /\  v  e.  ( Atoms `  K ) )  ->  ( ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u )  /\  Y  =  ( ( t 
.\/  u )  .\/  v ) )  -> 
( X  .\/  Y
)  =  W ) ) )
5958rexlimdvv 2828 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/= 
Y ) )  /\  ( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r
)  /\  X  =  ( ( q  .\/  r )  .\/  s
) ) )  /\  t  e.  ( Atoms `  K ) )  -> 
( E. u  e.  ( Atoms `  K ) E. v  e.  ( Atoms `  K ) ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) )  -> 
( X  .\/  Y
)  =  W ) )
6059rexlimdva 2822 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  /\  (
q  e.  ( Atoms `  K )  /\  (
r  e.  ( Atoms `  K )  /\  s  e.  ( Atoms `  K )
) )  /\  (
q  =/=  r  /\  -.  s  .<_  ( q 
.\/  r )  /\  X  =  ( (
q  .\/  r )  .\/  s ) ) )  ->  ( E. t  e.  ( Atoms `  K ) E. u  e.  ( Atoms `  K ) E. v  e.  ( Atoms `  K ) ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u )  /\  Y  =  ( ( t 
.\/  u )  .\/  v ) )  -> 
( X  .\/  Y
)  =  W ) )
61603exp 1152 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  (
( q  e.  (
Atoms `  K )  /\  ( r  e.  (
Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  ->  ( ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r )  /\  X  =  ( ( q 
.\/  r )  .\/  s ) )  -> 
( E. t  e.  ( Atoms `  K ) E. u  e.  ( Atoms `  K ) E. v  e.  ( Atoms `  K ) ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u )  /\  Y  =  ( ( t 
.\/  u )  .\/  v ) )  -> 
( X  .\/  Y
)  =  W ) ) ) )
6261expdimp 427 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  /\  q  e.  ( Atoms `  K )
)  ->  ( (
r  e.  ( Atoms `  K )  /\  s  e.  ( Atoms `  K )
)  ->  ( (
q  =/=  r  /\  -.  s  .<_  ( q 
.\/  r )  /\  X  =  ( (
q  .\/  r )  .\/  s ) )  -> 
( E. t  e.  ( Atoms `  K ) E. u  e.  ( Atoms `  K ) E. v  e.  ( Atoms `  K ) ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u )  /\  Y  =  ( ( t 
.\/  u )  .\/  v ) )  -> 
( X  .\/  Y
)  =  W ) ) ) )
6362rexlimdvv 2828 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  /\  q  e.  ( Atoms `  K )
)  ->  ( E. r  e.  ( Atoms `  K ) E. s  e.  ( Atoms `  K )
( q  =/=  r  /\  -.  s  .<_  ( q 
.\/  r )  /\  X  =  ( (
q  .\/  r )  .\/  s ) )  -> 
( E. t  e.  ( Atoms `  K ) E. u  e.  ( Atoms `  K ) E. v  e.  ( Atoms `  K ) ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u )  /\  Y  =  ( ( t 
.\/  u )  .\/  v ) )  -> 
( X  .\/  Y
)  =  W ) ) )
6463rexlimdva 2822 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  ( E. q  e.  ( Atoms `  K ) E. r  e.  ( Atoms `  K ) E. s  e.  ( Atoms `  K )
( q  =/=  r  /\  -.  s  .<_  ( q 
.\/  r )  /\  X  =  ( (
q  .\/  r )  .\/  s ) )  -> 
( E. t  e.  ( Atoms `  K ) E. u  e.  ( Atoms `  K ) E. v  e.  ( Atoms `  K ) ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u )  /\  Y  =  ( ( t 
.\/  u )  .\/  v ) )  -> 
( X  .\/  Y
)  =  W ) ) )
6564imp3a 421 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  (
( E. q  e.  ( Atoms `  K ) E. r  e.  ( Atoms `  K ) E. s  e.  ( Atoms `  K ) ( q  =/=  r  /\  -.  s  .<_  ( q  .\/  r )  /\  X  =  ( ( q 
.\/  r )  .\/  s ) )  /\  E. t  e.  ( Atoms `  K ) E. u  e.  ( Atoms `  K ) E. v  e.  ( Atoms `  K ) ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  Y  =  ( (
t  .\/  u )  .\/  v ) ) )  ->  ( X  .\/  Y )  =  W ) )
6615, 65mpd 15 1  |-  ( ( K  e.  HL  /\  ( X  e.  P  /\  Y  e.  P  /\  W  e.  V
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  ( X  .\/  Y )  =  W )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Basecbs 13459   lecple 13526   joincjn 14391   Atomscatm 29962   HLchlt 30049   LPlanesclpl 30190   LVolsclvol 30191
This theorem is referenced by:  2lplnm2N  30319  dalem13  30374
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14393  df-plt 14405  df-lub 14421  df-glb 14422  df-join 14423  df-meet 14424  df-p0 14458  df-lat 14465  df-clat 14527  df-oposet 29875  df-ol 29877  df-oml 29878  df-covers 29965  df-ats 29966  df-atl 29997  df-cvlat 30021  df-hlat 30050  df-llines 30196  df-lplanes 30197  df-lvols 30198
  Copyright terms: Public domain W3C validator