Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2moswap Structured version   Unicode version

Theorem 2moswap 2358
 Description: A condition allowing swap of "at most one" and existential quantifiers. (Contributed by NM, 10-Apr-2004.)
Assertion
Ref Expression
2moswap

Proof of Theorem 2moswap
StepHypRef Expression
1 nfe1 1748 . . . 4
21moexex 2352 . . 3
32expcom 426 . 2
4 19.8a 1763 . . . . 5
54pm4.71ri 616 . . . 4
65exbii 1593 . . 3
76mobii 2319 . 2
83, 7syl6ibr 220 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360  wal 1550  wex 1551  wmo 2284 This theorem is referenced by:  2euswap  2359  2eu1  2363  2rmoswap  27940 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288
 Copyright terms: Public domain W3C validator