MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndci Structured version   Unicode version

Theorem 2ndci 17513
Description: A countable basis generates a second-countable topology. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
2ndci  |-  ( ( B  e.  TopBases  /\  B  ~<_  om )  ->  ( topGen `  B )  e.  2ndc )

Proof of Theorem 2ndci
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl 445 . . 3  |-  ( ( B  e.  TopBases  /\  B  ~<_  om )  ->  B  e.  TopBases )
2 simpr 449 . . 3  |-  ( ( B  e.  TopBases  /\  B  ~<_  om )  ->  B  ~<_  om )
3 eqidd 2439 . . 3  |-  ( ( B  e.  TopBases  /\  B  ~<_  om )  ->  ( topGen `  B )  =  (
topGen `  B ) )
4 breq1 4217 . . . . 5  |-  ( x  =  B  ->  (
x  ~<_  om  <->  B  ~<_  om )
)
5 fveq2 5730 . . . . . 6  |-  ( x  =  B  ->  ( topGen `
 x )  =  ( topGen `  B )
)
65eqeq1d 2446 . . . . 5  |-  ( x  =  B  ->  (
( topGen `  x )  =  ( topGen `  B
)  <->  ( topGen `  B
)  =  ( topGen `  B ) ) )
74, 6anbi12d 693 . . . 4  |-  ( x  =  B  ->  (
( x  ~<_  om  /\  ( topGen `  x )  =  ( topGen `  B
) )  <->  ( B  ~<_  om  /\  ( topGen `  B
)  =  ( topGen `  B ) ) ) )
87rspcev 3054 . . 3  |-  ( ( B  e.  TopBases  /\  ( B  ~<_  om  /\  ( topGen `
 B )  =  ( topGen `  B )
) )  ->  E. x  e. 
TopBases  ( x  ~<_  om  /\  ( topGen `  x )  =  ( topGen `  B
) ) )
91, 2, 3, 8syl12anc 1183 . 2  |-  ( ( B  e.  TopBases  /\  B  ~<_  om )  ->  E. x  e. 
TopBases  ( x  ~<_  om  /\  ( topGen `  x )  =  ( topGen `  B
) ) )
10 is2ndc 17511 . 2  |-  ( (
topGen `  B )  e. 
2ndc 
<->  E. x  e.  TopBases  ( x  ~<_  om  /\  ( topGen `
 x )  =  ( topGen `  B )
) )
119, 10sylibr 205 1  |-  ( ( B  e.  TopBases  /\  B  ~<_  om )  ->  ( topGen `  B )  e.  2ndc )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   E.wrex 2708   class class class wbr 4214   omcom 4847   ` cfv 5456    ~<_ cdom 7109   topGenctg 13667   TopBasesctb 16964   2ndcc2ndc 17503
This theorem is referenced by:  2ndcrest  17519  2ndcomap  17523  dis2ndc  17525  dis1stc  17564  tx2ndc  17685  met2ndci  18554  re2ndc  18834
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-nul 4340
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-iota 5420  df-fv 5464  df-2ndc 17505
  Copyright terms: Public domain W3C validator