MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndfcl Unicode version

Theorem 2ndfcl 14224
Description: The second projection functor is a functor onto the right argument. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
1stfcl.t  |-  T  =  ( C  X.c  D )
1stfcl.c  |-  ( ph  ->  C  e.  Cat )
1stfcl.d  |-  ( ph  ->  D  e.  Cat )
2ndfcl.p  |-  Q  =  ( C  2ndF  D )
Assertion
Ref Expression
2ndfcl  |-  ( ph  ->  Q  e.  ( T 
Func  D ) )

Proof of Theorem 2ndfcl
Dummy variables  f 
g  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stfcl.t . . . 4  |-  T  =  ( C  X.c  D )
2 eqid 2389 . . . . 5  |-  ( Base `  C )  =  (
Base `  C )
3 eqid 2389 . . . . 5  |-  ( Base `  D )  =  (
Base `  D )
41, 2, 3xpcbas 14204 . . . 4  |-  ( (
Base `  C )  X.  ( Base `  D
) )  =  (
Base `  T )
5 eqid 2389 . . . 4  |-  (  Hom  `  T )  =  (  Hom  `  T )
6 1stfcl.c . . . 4  |-  ( ph  ->  C  e.  Cat )
7 1stfcl.d . . . 4  |-  ( ph  ->  D  e.  Cat )
8 2ndfcl.p . . . 4  |-  Q  =  ( C  2ndF  D )
91, 4, 5, 6, 7, 82ndfval 14220 . . 3  |-  ( ph  ->  Q  =  <. ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) ,  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 2nd  |`  ( x
(  Hom  `  T ) y ) ) )
>. )
10 fo2nd 6308 . . . . . . . 8  |-  2nd : _V -onto-> _V
11 fofun 5596 . . . . . . . 8  |-  ( 2nd
: _V -onto-> _V  ->  Fun 
2nd )
1210, 11ax-mp 8 . . . . . . 7  |-  Fun  2nd
13 fvex 5684 . . . . . . . 8  |-  ( Base `  C )  e.  _V
14 fvex 5684 . . . . . . . 8  |-  ( Base `  D )  e.  _V
1513, 14xpex 4932 . . . . . . 7  |-  ( (
Base `  C )  X.  ( Base `  D
) )  e.  _V
16 resfunexg 5898 . . . . . . 7  |-  ( ( Fun  2nd  /\  (
( Base `  C )  X.  ( Base `  D
) )  e.  _V )  ->  ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) )  e. 
_V )
1712, 15, 16mp2an 654 . . . . . 6  |-  ( 2nd  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) )  e.  _V
1815, 15mpt2ex 6366 . . . . . 6  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 2nd  |`  ( x
(  Hom  `  T ) y ) ) )  e.  _V
1917, 18op2ndd 6299 . . . . 5  |-  ( Q  =  <. ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) ,  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) ,  y  e.  ( (
Base `  C )  X.  ( Base `  D
) )  |->  ( 2nd  |`  ( x (  Hom  `  T ) y ) ) ) >.  ->  ( 2nd `  Q )  =  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) ,  y  e.  ( (
Base `  C )  X.  ( Base `  D
) )  |->  ( 2nd  |`  ( x (  Hom  `  T ) y ) ) ) )
209, 19syl 16 . . . 4  |-  ( ph  ->  ( 2nd `  Q
)  =  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 2nd  |`  ( x
(  Hom  `  T ) y ) ) ) )
2120opeq2d 3935 . . 3  |-  ( ph  -> 
<. ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) ,  ( 2nd `  Q
) >.  =  <. ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) ,  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 2nd  |`  ( x
(  Hom  `  T ) y ) ) )
>. )
229, 21eqtr4d 2424 . 2  |-  ( ph  ->  Q  =  <. ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) ,  ( 2nd `  Q ) >. )
23 eqid 2389 . . . 4  |-  (  Hom  `  D )  =  (  Hom  `  D )
24 eqid 2389 . . . 4  |-  ( Id
`  T )  =  ( Id `  T
)
25 eqid 2389 . . . 4  |-  ( Id
`  D )  =  ( Id `  D
)
26 eqid 2389 . . . 4  |-  (comp `  T )  =  (comp `  T )
27 eqid 2389 . . . 4  |-  (comp `  D )  =  (comp `  D )
281, 6, 7xpccat 14216 . . . 4  |-  ( ph  ->  T  e.  Cat )
29 f2ndres 6310 . . . . 5  |-  ( 2nd  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) : ( ( Base `  C )  X.  ( Base `  D ) ) --> ( Base `  D
)
3029a1i 11 . . . 4  |-  ( ph  ->  ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) : ( ( Base `  C
)  X.  ( Base `  D ) ) --> (
Base `  D )
)
31 eqid 2389 . . . . . 6  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 2nd  |`  ( x
(  Hom  `  T ) y ) ) )  =  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) ,  y  e.  ( (
Base `  C )  X.  ( Base `  D
) )  |->  ( 2nd  |`  ( x (  Hom  `  T ) y ) ) )
32 ovex 6047 . . . . . . 7  |-  ( x (  Hom  `  T
) y )  e. 
_V
33 resfunexg 5898 . . . . . . 7  |-  ( ( Fun  2nd  /\  (
x (  Hom  `  T
) y )  e. 
_V )  ->  ( 2nd  |`  ( x (  Hom  `  T )
y ) )  e. 
_V )
3412, 32, 33mp2an 654 . . . . . 6  |-  ( 2nd  |`  ( x (  Hom  `  T ) y ) )  e.  _V
3531, 34fnmpt2i 6361 . . . . 5  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 2nd  |`  ( x
(  Hom  `  T ) y ) ) )  Fn  ( ( (
Base `  C )  X.  ( Base `  D
) )  X.  (
( Base `  C )  X.  ( Base `  D
) ) )
3620fneq1d 5478 . . . . 5  |-  ( ph  ->  ( ( 2nd `  Q
)  Fn  ( ( ( Base `  C
)  X.  ( Base `  D ) )  X.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  <-> 
( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) ,  y  e.  ( (
Base `  C )  X.  ( Base `  D
) )  |->  ( 2nd  |`  ( x (  Hom  `  T ) y ) ) )  Fn  (
( ( Base `  C
)  X.  ( Base `  D ) )  X.  ( ( Base `  C
)  X.  ( Base `  D ) ) ) ) )
3735, 36mpbiri 225 . . . 4  |-  ( ph  ->  ( 2nd `  Q
)  Fn  ( ( ( Base `  C
)  X.  ( Base `  D ) )  X.  ( ( Base `  C
)  X.  ( Base `  D ) ) ) )
38 f2ndres 6310 . . . . . 6  |-  ( 2nd  |`  ( ( ( 1st `  x ) (  Hom  `  C ) ( 1st `  y ) )  X.  ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) ) : ( ( ( 1st `  x ) (  Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) --> ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) )
396adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  C  e.  Cat )
407adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  D  e.  Cat )
41 simprl 733 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
42 simprr 734 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
431, 4, 5, 39, 40, 8, 41, 422ndf2 14222 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( x ( 2nd `  Q ) y )  =  ( 2nd  |`  ( x
(  Hom  `  T ) y ) ) )
44 eqid 2389 . . . . . . . . . 10  |-  (  Hom  `  C )  =  (  Hom  `  C )
451, 4, 44, 23, 5, 41, 42xpchom 14206 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( x (  Hom  `  T )
y )  =  ( ( ( 1st `  x
) (  Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) )
4645reseq2d 5088 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( 2nd  |`  (
x (  Hom  `  T
) y ) )  =  ( 2nd  |`  (
( ( 1st `  x
) (  Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) ) )
4743, 46eqtrd 2421 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( x ( 2nd `  Q ) y )  =  ( 2nd  |`  ( (
( 1st `  x
) (  Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) ) )
4847feq1d 5522 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( ( x ( 2nd `  Q
) y ) : ( ( ( 1st `  x ) (  Hom  `  C ) ( 1st `  y ) )  X.  ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) --> ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) )  <->  ( 2nd  |`  ( ( ( 1st `  x ) (  Hom  `  C ) ( 1st `  y ) )  X.  ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) ) : ( ( ( 1st `  x ) (  Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) --> ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) )
4938, 48mpbiri 225 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( x ( 2nd `  Q ) y ) : ( ( ( 1st `  x
) (  Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) --> ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) )
50 fvres 5687 . . . . . . . 8  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  ( ( 2nd  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 x )  =  ( 2nd `  x
) )
5150ad2antrl 709 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( ( 2nd  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 x )  =  ( 2nd `  x
) )
52 fvres 5687 . . . . . . . 8  |-  ( y  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  ( ( 2nd  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 y )  =  ( 2nd `  y
) )
5352ad2antll 710 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( ( 2nd  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 y )  =  ( 2nd `  y
) )
5451, 53oveq12d 6040 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  x ) (  Hom  `  D ) ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  y ) )  =  ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) )
5545, 54feq23d 5530 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( ( x ( 2nd `  Q
) y ) : ( x (  Hom  `  T ) y ) --> ( ( ( 2nd  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 x ) (  Hom  `  D )
( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  y ) )  <->  ( x
( 2nd `  Q
) y ) : ( ( ( 1st `  x ) (  Hom  `  C ) ( 1st `  y ) )  X.  ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) --> ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) )
5649, 55mpbird 224 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( x ( 2nd `  Q ) y ) : ( x (  Hom  `  T
) y ) --> ( ( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  x ) (  Hom  `  D ) ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  y ) ) )
5728adantr 452 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  T  e.  Cat )
58 simpr 448 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
594, 5, 24, 57, 58catidcl 13836 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( Id
`  T ) `  x )  e.  ( x (  Hom  `  T
) x ) )
60 fvres 5687 . . . . . . 7  |-  ( ( ( Id `  T
) `  x )  e.  ( x (  Hom  `  T ) x )  ->  ( ( 2nd  |`  ( x (  Hom  `  T ) x ) ) `  ( ( Id `  T ) `
 x ) )  =  ( 2nd `  (
( Id `  T
) `  x )
) )
6159, 60syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( 2nd  |`  ( x (  Hom  `  T ) x ) ) `  ( ( Id `  T ) `
 x ) )  =  ( 2nd `  (
( Id `  T
) `  x )
) )
62 1st2nd2 6327 . . . . . . . . . 10  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )
6362adantl 453 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )
6463fveq2d 5674 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( Id
`  T ) `  x )  =  ( ( Id `  T
) `  <. ( 1st `  x ) ,  ( 2nd `  x )
>. ) )
656adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  C  e.  Cat )
667adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  D  e.  Cat )
67 eqid 2389 . . . . . . . . 9  |-  ( Id
`  C )  =  ( Id `  C
)
68 xp1st 6317 . . . . . . . . . 10  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  ( 1st `  x
)  e.  ( Base `  C ) )
6968adantl 453 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( 1st `  x
)  e.  ( Base `  C ) )
70 xp2nd 6318 . . . . . . . . . 10  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  ( 2nd `  x
)  e.  ( Base `  D ) )
7170adantl 453 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( 2nd `  x
)  e.  ( Base `  D ) )
721, 65, 66, 2, 3, 67, 25, 24, 69, 71xpcid 14215 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( Id
`  T ) `  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  =  <. ( ( Id
`  C ) `  ( 1st `  x ) ) ,  ( ( Id `  D ) `
 ( 2nd `  x
) ) >. )
7364, 72eqtrd 2421 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( Id
`  T ) `  x )  =  <. ( ( Id `  C
) `  ( 1st `  x ) ) ,  ( ( Id `  D ) `  ( 2nd `  x ) )
>. )
74 fvex 5684 . . . . . . . 8  |-  ( ( Id `  C ) `
 ( 1st `  x
) )  e.  _V
75 fvex 5684 . . . . . . . 8  |-  ( ( Id `  D ) `
 ( 2nd `  x
) )  e.  _V
7674, 75op2ndd 6299 . . . . . . 7  |-  ( ( ( Id `  T
) `  x )  =  <. ( ( Id
`  C ) `  ( 1st `  x ) ) ,  ( ( Id `  D ) `
 ( 2nd `  x
) ) >.  ->  ( 2nd `  ( ( Id
`  T ) `  x ) )  =  ( ( Id `  D ) `  ( 2nd `  x ) ) )
7773, 76syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( 2nd `  (
( Id `  T
) `  x )
)  =  ( ( Id `  D ) `
 ( 2nd `  x
) ) )
7861, 77eqtrd 2421 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( 2nd  |`  ( x (  Hom  `  T ) x ) ) `  ( ( Id `  T ) `
 x ) )  =  ( ( Id
`  D ) `  ( 2nd `  x ) ) )
791, 4, 5, 65, 66, 8, 58, 582ndf2 14222 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( x ( 2nd `  Q ) x )  =  ( 2nd  |`  ( x
(  Hom  `  T ) x ) ) )
8079fveq1d 5672 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( x ( 2nd `  Q
) x ) `  ( ( Id `  T ) `  x
) )  =  ( ( 2nd  |`  (
x (  Hom  `  T
) x ) ) `
 ( ( Id
`  T ) `  x ) ) )
8150adantl 453 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( 2nd  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 x )  =  ( 2nd `  x
) )
8281fveq2d 5674 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( Id
`  D ) `  ( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  x ) )  =  ( ( Id `  D ) `  ( 2nd `  x ) ) )
8378, 80, 823eqtr4d 2431 . . . 4  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( x ( 2nd `  Q
) x ) `  ( ( Id `  T ) `  x
) )  =  ( ( Id `  D
) `  ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) `  x ) ) )
84283ad2ant1 978 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  T  e.  Cat )
85 simp21 990 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
86 simp22 991 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
87 simp23 992 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
88 simp3l 985 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  f  e.  ( x (  Hom  `  T ) y ) )
89 simp3r 986 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  g  e.  ( y (  Hom  `  T ) z ) )
904, 5, 26, 84, 85, 86, 87, 88, 89catcocl 13839 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( g
( <. x ,  y
>. (comp `  T )
z ) f )  e.  ( x (  Hom  `  T )
z ) )
91 fvres 5687 . . . . . . 7  |-  ( ( g ( <. x ,  y >. (comp `  T ) z ) f )  e.  ( x (  Hom  `  T
) z )  -> 
( ( 2nd  |`  (
x (  Hom  `  T
) z ) ) `
 ( g (
<. x ,  y >.
(comp `  T )
z ) f ) )  =  ( 2nd `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) ) )
9290, 91syl 16 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( ( 2nd  |`  ( x (  Hom  `  T )
z ) ) `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) )  =  ( 2nd `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) ) )
931, 4, 5, 26, 85, 86, 87, 88, 89, 27xpcco2nd 14211 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( 2nd `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) )  =  ( ( 2nd `  g ) ( <. ( 2nd `  x
) ,  ( 2nd `  y ) >. (comp `  D ) ( 2nd `  z ) ) ( 2nd `  f ) ) )
9492, 93eqtrd 2421 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( ( 2nd  |`  ( x (  Hom  `  T )
z ) ) `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) )  =  ( ( 2nd `  g ) ( <. ( 2nd `  x
) ,  ( 2nd `  y ) >. (comp `  D ) ( 2nd `  z ) ) ( 2nd `  f ) ) )
9563ad2ant1 978 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  C  e.  Cat )
9673ad2ant1 978 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  D  e.  Cat )
971, 4, 5, 95, 96, 8, 85, 872ndf2 14222 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( x
( 2nd `  Q
) z )  =  ( 2nd  |`  (
x (  Hom  `  T
) z ) ) )
9897fveq1d 5672 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( (
x ( 2nd `  Q
) z ) `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) )  =  ( ( 2nd  |`  ( x
(  Hom  `  T ) z ) ) `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) ) )
9985, 50syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) `  x )  =  ( 2nd `  x
) )
10086, 52syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) `  y )  =  ( 2nd `  y
) )
10199, 100opeq12d 3936 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  <. ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  x ) ,  ( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  y ) >.  =  <. ( 2nd `  x ) ,  ( 2nd `  y
) >. )
102 fvres 5687 . . . . . . . 8  |-  ( z  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  ( ( 2nd  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 z )  =  ( 2nd `  z
) )
10387, 102syl 16 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) `  z )  =  ( 2nd `  z
) )
104101, 103oveq12d 6040 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( <. ( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  x ) ,  ( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  y ) >. (comp `  D ) ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  z ) )  =  ( <. ( 2nd `  x
) ,  ( 2nd `  y ) >. (comp `  D ) ( 2nd `  z ) ) )
1051, 4, 5, 95, 96, 8, 86, 872ndf2 14222 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( y
( 2nd `  Q
) z )  =  ( 2nd  |`  (
y (  Hom  `  T
) z ) ) )
106105fveq1d 5672 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( (
y ( 2nd `  Q
) z ) `  g )  =  ( ( 2nd  |`  (
y (  Hom  `  T
) z ) ) `
 g ) )
107 fvres 5687 . . . . . . . 8  |-  ( g  e.  ( y (  Hom  `  T )
z )  ->  (
( 2nd  |`  ( y (  Hom  `  T
) z ) ) `
 g )  =  ( 2nd `  g
) )
10889, 107syl 16 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( ( 2nd  |`  ( y (  Hom  `  T )
z ) ) `  g )  =  ( 2nd `  g ) )
109106, 108eqtrd 2421 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( (
y ( 2nd `  Q
) z ) `  g )  =  ( 2nd `  g ) )
1101, 4, 5, 95, 96, 8, 85, 862ndf2 14222 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( x
( 2nd `  Q
) y )  =  ( 2nd  |`  (
x (  Hom  `  T
) y ) ) )
111110fveq1d 5672 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( (
x ( 2nd `  Q
) y ) `  f )  =  ( ( 2nd  |`  (
x (  Hom  `  T
) y ) ) `
 f ) )
112 fvres 5687 . . . . . . . 8  |-  ( f  e.  ( x (  Hom  `  T )
y )  ->  (
( 2nd  |`  ( x (  Hom  `  T
) y ) ) `
 f )  =  ( 2nd `  f
) )
11388, 112syl 16 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( ( 2nd  |`  ( x (  Hom  `  T )
y ) ) `  f )  =  ( 2nd `  f ) )
114111, 113eqtrd 2421 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( (
x ( 2nd `  Q
) y ) `  f )  =  ( 2nd `  f ) )
115104, 109, 114oveq123d 6043 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( (
( y ( 2nd `  Q ) z ) `
 g ) (
<. ( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  x ) ,  ( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  y ) >. (comp `  D ) ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  z ) ) ( ( x ( 2nd `  Q ) y ) `
 f ) )  =  ( ( 2nd `  g ) ( <.
( 2nd `  x
) ,  ( 2nd `  y ) >. (comp `  D ) ( 2nd `  z ) ) ( 2nd `  f ) ) )
11694, 98, 1153eqtr4d 2431 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( (
x ( 2nd `  Q
) z ) `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) )  =  ( ( ( y ( 2nd `  Q ) z ) `
 g ) (
<. ( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  x ) ,  ( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  y ) >. (comp `  D ) ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  z ) ) ( ( x ( 2nd `  Q ) y ) `
 f ) ) )
1174, 3, 5, 23, 24, 25, 26, 27, 28, 7, 30, 37, 56, 83, 116isfuncd 13991 . . 3  |-  ( ph  ->  ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) ( T  Func  D )
( 2nd `  Q
) )
118 df-br 4156 . . 3  |-  ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) ( T  Func  D )
( 2nd `  Q
)  <->  <. ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) ,  ( 2nd `  Q
) >.  e.  ( T 
Func  D ) )
119117, 118sylib 189 . 2  |-  ( ph  -> 
<. ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) ,  ( 2nd `  Q
) >.  e.  ( T 
Func  D ) )
12022, 119eqeltrd 2463 1  |-  ( ph  ->  Q  e.  ( T 
Func  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   _Vcvv 2901   <.cop 3762   class class class wbr 4155    X. cxp 4818    |` cres 4822   Fun wfun 5390    Fn wfn 5391   -->wf 5392   -onto->wfo 5394   ` cfv 5396  (class class class)co 6022    e. cmpt2 6024   1stc1st 6288   2ndc2nd 6289   Basecbs 13398    Hom chom 13469  compcco 13470   Catccat 13818   Idccid 13819    Func cfunc 13980    X.c cxpc 14194    2ndF c2ndf 14196
This theorem is referenced by:  prf2nd  14231  1st2ndprf  14232  uncfcl  14261  uncf1  14262  uncf2  14263  curf2ndf  14273  yonedalem1  14298  yonedalem21  14299  yonedalem22  14304
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-oadd 6666  df-er 6843  df-map 6958  df-ixp 7002  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-nn 9935  df-2 9992  df-3 9993  df-4 9994  df-5 9995  df-6 9996  df-7 9997  df-8 9998  df-9 9999  df-10 10000  df-n0 10156  df-z 10217  df-dec 10317  df-uz 10423  df-fz 10978  df-struct 13400  df-ndx 13401  df-slot 13402  df-base 13403  df-hom 13482  df-cco 13483  df-cat 13822  df-cid 13823  df-func 13984  df-xpc 14198  df-2ndf 14200
  Copyright terms: Public domain W3C validator