Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ralbida Unicode version

Theorem 2ralbida 2595
 Description: Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 24-Feb-2004.)
Hypotheses
Ref Expression
2ralbida.1
2ralbida.2
2ralbida.3
Assertion
Ref Expression
2ralbida
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)   (,)   (,)   ()   (,)

Proof of Theorem 2ralbida
StepHypRef Expression
1 2ralbida.1 . 2
2 2ralbida.2 . . . 4
3 nfv 1609 . . . 4
42, 3nfan 1783 . . 3
5 2ralbida.3 . . . 4
65anassrs 629 . . 3
74, 6ralbida 2570 . 2
81, 7ralbida 2570 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 176   wa 358  wnf 1534   wcel 1696  wral 2556 This theorem is referenced by:  2ralbidva  2596 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-11 1727 This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-nf 1535  df-ral 2561
 Copyright terms: Public domain W3C validator