Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2reu2 Unicode version

Theorem 2reu2 28068
Description: Double restricted existential uniqueness, analogous to 2eu2 2237. (Contributed by Alexander van der Vekens, 29-Jun-2017.)
Assertion
Ref Expression
2reu2  |-  ( E! y  e.  B  E. x  e.  A  ph  ->  ( E! x  e.  A  E! y  e.  B  ph  <->  E! x  e.  A  E. y  e.  B  ph )
)
Distinct variable groups:    x, y, A    x, B
Allowed substitution hints:    ph( x, y)    B( y)

Proof of Theorem 2reu2
StepHypRef Expression
1 reurmo 2768 . . 3  |-  ( E! y  e.  B  E. x  e.  A  ph  ->  E* y  e.  B E. x  e.  A  ph )
2 2rmorex 2982 . . 3  |-  ( E* y  e.  B E. x  e.  A  ph  ->  A. x  e.  A  E* y  e.  B ph )
3 2reu1 28067 . . . 4  |-  ( A. x  e.  A  E* y  e.  B ph  ->  ( E! x  e.  A  E! y  e.  B  ph  <->  ( E! x  e.  A  E. y  e.  B  ph  /\  E! y  e.  B  E. x  e.  A  ph ) ) )
4 simpl 443 . . . 4  |-  ( ( E! x  e.  A  E. y  e.  B  ph 
/\  E! y  e.  B  E. x  e.  A  ph )  ->  E! x  e.  A  E. y  e.  B  ph )
53, 4syl6bi 219 . . 3  |-  ( A. x  e.  A  E* y  e.  B ph  ->  ( E! x  e.  A  E! y  e.  B  ph  ->  E! x  e.  A  E. y  e.  B  ph )
)
61, 2, 53syl 18 . 2  |-  ( E! y  e.  B  E. x  e.  A  ph  ->  ( E! x  e.  A  E! y  e.  B  ph 
->  E! x  e.  A  E. y  e.  B  ph ) )
7 2rexreu 28066 . . 3  |-  ( ( E! x  e.  A  E. y  e.  B  ph 
/\  E! y  e.  B  E. x  e.  A  ph )  ->  E! x  e.  A  E! y  e.  B  ph )
87expcom 424 . 2  |-  ( E! y  e.  B  E. x  e.  A  ph  ->  ( E! x  e.  A  E. y  e.  B  ph 
->  E! x  e.  A  E! y  e.  B  ph ) )
96, 8impbid 183 1  |-  ( E! y  e.  B  E. x  e.  A  ph  ->  ( E! x  e.  A  E! y  e.  B  ph  <->  E! x  e.  A  E. y  e.  B  ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wral 2556   E.wrex 2557   E!wreu 2558   E*wrmo 2559
This theorem is referenced by:  2reu8  28073
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564
  Copyright terms: Public domain W3C validator