Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2reu2rex Structured version   Unicode version

Theorem 2reu2rex 27892
Description: Double restricted existential uniqueness, analogous to 2eu2ex 2354. (Contributed by Alexander van der Vekens, 25-Jun-2017.)
Assertion
Ref Expression
2reu2rex  |-  ( E! x  e.  A  E! y  e.  B  ph  ->  E. x  e.  A  E. y  e.  B  ph )
Distinct variable groups:    y, A    x, y    x, B
Allowed substitution hints:    ph( x, y)    A( x)    B( y)

Proof of Theorem 2reu2rex
StepHypRef Expression
1 reurex 2914 . 2  |-  ( E! x  e.  A  E! y  e.  B  ph  ->  E. x  e.  A  E! y  e.  B  ph )
2 reurex 2914 . . 3  |-  ( E! y  e.  B  ph  ->  E. y  e.  B  ph )
32reximi 2805 . 2  |-  ( E. x  e.  A  E! y  e.  B  ph  ->  E. x  e.  A  E. y  e.  B  ph )
41, 3syl 16 1  |-  ( E! x  e.  A  E! y  e.  B  ph  ->  E. x  e.  A  E. y  e.  B  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wrex 2698   E!wreu 2699
This theorem is referenced by:  2reu1  27895
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705
  Copyright terms: Public domain W3C validator