Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2reu5lem2 Unicode version

Theorem 2reu5lem2 2984
 Description: Lemma for 2reu5 2986. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
2reu5lem2
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,)   ()   ()

Proof of Theorem 2reu5lem2
StepHypRef Expression
1 df-rmo 2564 . . 3
21ralbii 2580 . 2
3 df-ral 2561 . . 3
4 moanimv 2214 . . . . . 6
54bicomi 193 . . . . 5
6 3anass 938 . . . . . . 7
76bicomi 193 . . . . . 6
87mobii 2192 . . . . 5
95, 8bitri 240 . . . 4
109albii 1556 . . 3
113, 10bitri 240 . 2
122, 11bitri 240 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 176   wa 358   w3a 934  wal 1530   wcel 1696  wmo 2157  wral 2556  wrmo 2559 This theorem is referenced by:  2reu5lem3  2985 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-ral 2561  df-rmo 2564
 Copyright terms: Public domain W3C validator