Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2rexbiia Structured version   Unicode version

Theorem 2rexbiia 2741
 Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.)
Hypothesis
Ref Expression
2rexbiia.1
Assertion
Ref Expression
2rexbiia
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)   (,)   ()   (,)

Proof of Theorem 2rexbiia
StepHypRef Expression
1 2rexbiia.1 . . 3
21rexbidva 2724 . 2
32rexbiia 2740 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wa 360   wcel 1726  wrex 2708 This theorem is referenced by:  cnref1o  10612  mdsymlem8  23918  xlt2addrd  24129  elunirnmbfm  24608 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-11 1762 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-nf 1555  df-rex 2713
 Copyright terms: Public domain W3C validator