Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2rexreu Unicode version

Theorem 2rexreu 28066
 Description: Double restricted existential uniqueness implies double restricted uniqueness quantification, analogous to 2exeu 2233. (Contributed by Alexander van der Vekens, 25-Jun-2017.)
Assertion
Ref Expression
2rexreu
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,)   ()   ()

Proof of Theorem 2rexreu
StepHypRef Expression
1 reurmo 2768 . . . 4
2 reurex 2767 . . . . 5
32rmoimi 28057 . . . 4
41, 3syl 15 . . 3
5 2reurex 28062 . . 3
64, 5anim12ci 550 . 2
7 reu5 2766 . 2
86, 7sylibr 203 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 358  wrex 2557  wreu 2558  wrmo 2559 This theorem is referenced by:  2reu1  28067  2reu2  28068  2reu3  28069 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564
 Copyright terms: Public domain W3C validator