Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sb5ndALT Structured version   Unicode version

Theorem 2sb5ndALT 29045
Description: Equivalence for double substitution 2sb5 2189 without distinct  x,  y requirement. 2sb5nd 28648 is derived from 2sb5ndVD 29023. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in 2sb5ndVD 29023. (Contributed by Alan Sare, 19-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
2sb5ndALT  |-  ( ( -.  A. x  x  =  y  \/  u  =  v )  -> 
( [ u  /  x ] [ v  / 
y ] ph  <->  E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ph ) ) )
Distinct variable groups:    x, u    y, u    x, v    y,
v
Allowed substitution hints:    ph( x, y, v, u)

Proof of Theorem 2sb5ndALT
StepHypRef Expression
1 a9e2ndeq 28647 . 2  |-  ( ( -.  A. x  x  =  y  \/  u  =  v )  <->  E. x E. y ( x  =  u  /\  y  =  v ) )
2 anabs5 786 . . . 4  |-  ( ( E. x E. y
( x  =  u  /\  y  =  v )  /\  ( E. x E. y ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) )  <->  ( E. x E. y ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) )
3 2pm13.193 28640 . . . . . . . . 9  |-  ( ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) 
<->  ( ( x  =  u  /\  y  =  v )  /\  ph ) )
43exbii 1593 . . . . . . . 8  |-  ( E. y ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph )  <->  E. y
( ( x  =  u  /\  y  =  v )  /\  ph ) )
5 hbs1 2182 . . . . . . . . . . . 12  |-  ( [ u  /  x ] [ v  /  y ] ph  ->  A. x [ u  /  x ] [ v  /  y ] ph )
6 id 21 . . . . . . . . . . . . 13  |-  ( A. x  x  =  y  ->  A. x  x  =  y )
7 ax10o 2039 . . . . . . . . . . . . 13  |-  ( A. x  x  =  y  ->  ( A. x [
u  /  x ] [ v  /  y ] ph  ->  A. y [ u  /  x ] [ v  /  y ] ph ) )
86, 7syl 16 . . . . . . . . . . . 12  |-  ( A. x  x  =  y  ->  ( A. x [
u  /  x ] [ v  /  y ] ph  ->  A. y [ u  /  x ] [ v  /  y ] ph ) )
9 pm3.33 570 . . . . . . . . . . . 12  |-  ( ( ( [ u  /  x ] [ v  / 
y ] ph  ->  A. x [ u  /  x ] [ v  / 
y ] ph )  /\  ( A. x [
u  /  x ] [ v  /  y ] ph  ->  A. y [ u  /  x ] [ v  /  y ] ph ) )  -> 
( [ u  /  x ] [ v  / 
y ] ph  ->  A. y [ u  /  x ] [ v  / 
y ] ph )
)
105, 8, 9sylancr 646 . . . . . . . . . . 11  |-  ( A. x  x  =  y  ->  ( [ u  /  x ] [ v  / 
y ] ph  ->  A. y [ u  /  x ] [ v  / 
y ] ph )
)
11 hbs1 2182 . . . . . . . . . . . . . 14  |-  ( [ v  /  y ]
ph  ->  A. y [ v  /  y ] ph )
1211sbt 2127 . . . . . . . . . . . . 13  |-  [ u  /  x ] ( [ v  /  y ]
ph  ->  A. y [ v  /  y ] ph )
13 sbi1 2133 . . . . . . . . . . . . 13  |-  ( [ u  /  x ]
( [ v  / 
y ] ph  ->  A. y [ v  / 
y ] ph )  ->  ( [ u  /  x ] [ v  / 
y ] ph  ->  [ u  /  x ] A. y [ v  / 
y ] ph )
)
1412, 13ax-mp 8 . . . . . . . . . . . 12  |-  ( [ u  /  x ] [ v  /  y ] ph  ->  [ u  /  x ] A. y [ v  /  y ] ph )
15 id 21 . . . . . . . . . . . . . 14  |-  ( -. 
A. x  x  =  y  ->  -.  A. x  x  =  y )
16 ax10 2026 . . . . . . . . . . . . . . 15  |-  ( A. y  y  =  x  ->  A. x  x  =  y )
1716con3i 130 . . . . . . . . . . . . . 14  |-  ( -. 
A. x  x  =  y  ->  -.  A. y 
y  =  x )
1815, 17syl 16 . . . . . . . . . . . . 13  |-  ( -. 
A. x  x  =  y  ->  -.  A. y 
y  =  x )
19 sbal2 2212 . . . . . . . . . . . . 13  |-  ( -. 
A. y  y  =  x  ->  ( [
u  /  x ] A. y [ v  / 
y ] ph  <->  A. y [ u  /  x ] [ v  /  y ] ph ) )
2018, 19syl 16 . . . . . . . . . . . 12  |-  ( -. 
A. x  x  =  y  ->  ( [
u  /  x ] A. y [ v  / 
y ] ph  <->  A. y [ u  /  x ] [ v  /  y ] ph ) )
21 imbi2 316 . . . . . . . . . . . . 13  |-  ( ( [ u  /  x ] A. y [ v  /  y ] ph  <->  A. y [ u  /  x ] [ v  / 
y ] ph )  ->  ( ( [ u  /  x ] [ v  /  y ] ph  ->  [ u  /  x ] A. y [ v  /  y ] ph ) 
<->  ( [ u  /  x ] [ v  / 
y ] ph  ->  A. y [ u  /  x ] [ v  / 
y ] ph )
) )
2221biimpa21 28657 . . . . . . . . . . . 12  |-  ( ( ( [ u  /  x ] [ v  / 
y ] ph  ->  [ u  /  x ] A. y [ v  / 
y ] ph )  /\  ( [ u  /  x ] A. y [ v  /  y ]
ph 
<-> 
A. y [ u  /  x ] [ v  /  y ] ph ) )  ->  ( [ u  /  x ] [ v  /  y ] ph  ->  A. y [ u  /  x ] [ v  /  y ] ph ) )
2314, 20, 22sylancr 646 . . . . . . . . . . 11  |-  ( -. 
A. x  x  =  y  ->  ( [
u  /  x ] [ v  /  y ] ph  ->  A. y [ u  /  x ] [ v  /  y ] ph ) )
2410, 23pm2.61i 159 . . . . . . . . . 10  |-  ( [ u  /  x ] [ v  /  y ] ph  ->  A. y [ u  /  x ] [ v  /  y ] ph )
2524nfi 1561 . . . . . . . . 9  |-  F/ y [ u  /  x ] [ v  /  y ] ph
262519.41 1901 . . . . . . . 8  |-  ( E. y ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph )  <->  ( E. y ( x  =  u  /\  y  =  v )  /\  [
u  /  x ] [ v  /  y ] ph ) )
274, 26bitr3i 244 . . . . . . 7  |-  ( E. y ( ( x  =  u  /\  y  =  v )  /\  ph )  <->  ( E. y
( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) )
2827exbii 1593 . . . . . 6  |-  ( E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ph )  <->  E. x ( E. y
( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) )
29 nfs1v 2183 . . . . . . 7  |-  F/ x [ u  /  x ] [ v  /  y ] ph
302919.41 1901 . . . . . 6  |-  ( E. x ( E. y
( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) 
<->  ( E. x E. y ( x  =  u  /\  y  =  v )  /\  [
u  /  x ] [ v  /  y ] ph ) )
3128, 30bitr2i 243 . . . . 5  |-  ( ( E. x E. y
( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) 
<->  E. x E. y
( ( x  =  u  /\  y  =  v )  /\  ph ) )
3231anbi2i 677 . . . 4  |-  ( ( E. x E. y
( x  =  u  /\  y  =  v )  /\  ( E. x E. y ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) )  <->  ( E. x E. y ( x  =  u  /\  y  =  v )  /\  E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ph )
) )
332, 32bitr3i 244 . . 3  |-  ( ( E. x E. y
( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) 
<->  ( E. x E. y ( x  =  u  /\  y  =  v )  /\  E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ph ) ) )
34 pm5.32 619 . . 3  |-  ( ( E. x E. y
( x  =  u  /\  y  =  v )  ->  ( [
u  /  x ] [ v  /  y ] ph  <->  E. x E. y
( ( x  =  u  /\  y  =  v )  /\  ph ) ) )  <->  ( ( E. x E. y ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph )  <->  ( E. x E. y ( x  =  u  /\  y  =  v )  /\  E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ph )
) ) )
3533, 34mpbir 202 . 2  |-  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  ( [ u  /  x ] [ v  / 
y ] ph  <->  E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ph ) ) )
361, 35sylbi 189 1  |-  ( ( -.  A. x  x  =  y  \/  u  =  v )  -> 
( [ u  /  x ] [ v  / 
y ] ph  <->  E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ph ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360   A.wal 1550   E.wex 1551    = wceq 1653   [wsb 1659
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2424  df-cleq 2430  df-clel 2433  df-ne 2602  df-v 2959
  Copyright terms: Public domain W3C validator