Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sbcrex Structured version   Unicode version

Theorem 2sbcrex 26857
Description: Exchange an existential quantifier with two substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Hypotheses
Ref Expression
2sbcrex.1  |-  A  e. 
_V
2sbcrex.2  |-  B  e. 
_V
Assertion
Ref Expression
2sbcrex  |-  ( [. A  /  a ]. [. B  /  b ]. E. c  e.  C  ph  <->  E. c  e.  C  [. A  / 
a ]. [. B  / 
b ]. ph )
Distinct variable groups:    A, c    B, c    C, b    a, c   
b, c    C, a
Allowed substitution hints:    ph( a, b, c)    A( a, b)    B( a, b)    C( c)

Proof of Theorem 2sbcrex
StepHypRef Expression
1 2sbcrex.2 . . . 4  |-  B  e. 
_V
2 sbcrexg 3238 . . . 4  |-  ( B  e.  _V  ->  ( [. B  /  b ]. E. c  e.  C  ph  <->  E. c  e.  C  [. B  /  b ]. ph )
)
31, 2ax-mp 5 . . 3  |-  ( [. B  /  b ]. E. c  e.  C  ph  <->  E. c  e.  C  [. B  / 
b ]. ph )
43sbcbii 3218 . 2  |-  ( [. A  /  a ]. [. B  /  b ]. E. c  e.  C  ph  <->  [. A  / 
a ]. E. c  e.  C  [. B  / 
b ]. ph )
5 2sbcrex.1 . . 3  |-  A  e. 
_V
6 sbcrexg 3238 . . 3  |-  ( A  e.  _V  ->  ( [. A  /  a ]. E. c  e.  C  [. B  /  b ]. ph  <->  E. c  e.  C  [. A  /  a ]. [. B  /  b ]. ph )
)
75, 6ax-mp 5 . 2  |-  ( [. A  /  a ]. E. c  e.  C  [. B  /  b ]. ph  <->  E. c  e.  C  [. A  / 
a ]. [. B  / 
b ]. ph )
84, 7bitri 242 1  |-  ( [. A  /  a ]. [. B  /  b ]. E. c  e.  C  ph  <->  E. c  e.  C  [. A  / 
a ]. [. B  / 
b ]. ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    e. wcel 1726   E.wrex 2708   _Vcvv 2958   [.wsbc 3163
This theorem is referenced by:  2rexfrabdioph  26870  4rexfrabdioph  26872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rex 2713  df-v 2960  df-sbc 3164
  Copyright terms: Public domain W3C validator