MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sq Unicode version

Theorem 2sq 20617
Description: All primes of the form  4 k  +  1 are sums of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
2sq  |-  ( ( P  e.  Prime  /\  ( P  mod  4 )  =  1 )  ->  E. x  e.  ZZ  E. y  e.  ZZ  P  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
Distinct variable group:    x, y, P

Proof of Theorem 2sq
Dummy variables  a 
b  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2285 . . 3  |-  ran  (
w  e.  ZZ [
_i ]  |->  ( ( abs `  w ) ^ 2 ) )  =  ran  ( w  e.  ZZ [ _i ]  |->  ( ( abs `  w ) ^ 2 ) )
2 oveq1 5867 . . . . . . 7  |-  ( a  =  x  ->  (
a  gcd  b )  =  ( x  gcd  b ) )
32eqeq1d 2293 . . . . . 6  |-  ( a  =  x  ->  (
( a  gcd  b
)  =  1  <->  (
x  gcd  b )  =  1 ) )
4 oveq1 5867 . . . . . . . 8  |-  ( a  =  x  ->  (
a ^ 2 )  =  ( x ^
2 ) )
54oveq1d 5875 . . . . . . 7  |-  ( a  =  x  ->  (
( a ^ 2 )  +  ( b ^ 2 ) )  =  ( ( x ^ 2 )  +  ( b ^ 2 ) ) )
65eqeq2d 2296 . . . . . 6  |-  ( a  =  x  ->  (
z  =  ( ( a ^ 2 )  +  ( b ^
2 ) )  <->  z  =  ( ( x ^
2 )  +  ( b ^ 2 ) ) ) )
73, 6anbi12d 691 . . . . 5  |-  ( a  =  x  ->  (
( ( a  gcd  b )  =  1  /\  z  =  ( ( a ^ 2 )  +  ( b ^ 2 ) ) )  <->  ( ( x  gcd  b )  =  1  /\  z  =  ( ( x ^
2 )  +  ( b ^ 2 ) ) ) ) )
8 oveq2 5868 . . . . . . 7  |-  ( b  =  y  ->  (
x  gcd  b )  =  ( x  gcd  y ) )
98eqeq1d 2293 . . . . . 6  |-  ( b  =  y  ->  (
( x  gcd  b
)  =  1  <->  (
x  gcd  y )  =  1 ) )
10 oveq1 5867 . . . . . . . 8  |-  ( b  =  y  ->  (
b ^ 2 )  =  ( y ^
2 ) )
1110oveq2d 5876 . . . . . . 7  |-  ( b  =  y  ->  (
( x ^ 2 )  +  ( b ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
1211eqeq2d 2296 . . . . . 6  |-  ( b  =  y  ->  (
z  =  ( ( x ^ 2 )  +  ( b ^
2 ) )  <->  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )
139, 12anbi12d 691 . . . . 5  |-  ( b  =  y  ->  (
( ( x  gcd  b )  =  1  /\  z  =  ( ( x ^ 2 )  +  ( b ^ 2 ) ) )  <->  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) ) )
147, 13cbvrex2v 2775 . . . 4  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( a  gcd  b
)  =  1  /\  z  =  ( ( a ^ 2 )  +  ( b ^
2 ) ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) ) )
1514abbii 2397 . . 3  |-  { z  |  E. a  e.  ZZ  E. b  e.  ZZ  ( ( a  gcd  b )  =  1  /\  z  =  ( ( a ^
2 )  +  ( b ^ 2 ) ) ) }  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
161, 152sqlem11 20616 . 2  |-  ( ( P  e.  Prime  /\  ( P  mod  4 )  =  1 )  ->  P  e.  ran  ( w  e.  ZZ [ _i ]  |->  ( ( abs `  w
) ^ 2 ) ) )
1712sqlem2 20605 . 2  |-  ( P  e.  ran  ( w  e.  ZZ [ _i ]  |->  ( ( abs `  w ) ^ 2 ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  P  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
1816, 17sylib 188 1  |-  ( ( P  e.  Prime  /\  ( P  mod  4 )  =  1 )  ->  E. x  e.  ZZ  E. y  e.  ZZ  P  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686   {cab 2271   E.wrex 2546    e. cmpt 4079   ran crn 4692   ` cfv 5257  (class class class)co 5860   1c1 8740    + caddc 8742   2c2 9797   4c4 9799   ZZcz 10026    mod cmo 10975   ^cexp 11106   abscabs 11721    gcd cgcd 12687   Primecprime 12760   ZZ [ _i ]cgz 12978
This theorem is referenced by:  2sqb  20619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817  ax-addf 8818  ax-mulf 8819
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-of 6080  df-ofr 6081  df-1st 6124  df-2nd 6125  df-tpos 6236  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-2o 6482  df-oadd 6485  df-er 6662  df-ec 6664  df-qs 6668  df-map 6776  df-pm 6777  df-ixp 6820  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-sup 7196  df-oi 7227  df-card 7574  df-cda 7796  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-4 9808  df-5 9809  df-6 9810  df-7 9811  df-8 9812  df-9 9813  df-10 9814  df-n0 9968  df-z 10027  df-dec 10127  df-uz 10233  df-q 10319  df-rp 10357  df-fz 10785  df-fzo 10873  df-fl 10927  df-mod 10976  df-seq 11049  df-exp 11107  df-hash 11340  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-dvds 12534  df-gcd 12688  df-prm 12761  df-phi 12836  df-pc 12892  df-gz 12979  df-struct 13152  df-ndx 13153  df-slot 13154  df-base 13155  df-sets 13156  df-ress 13157  df-plusg 13223  df-mulr 13224  df-starv 13225  df-sca 13226  df-vsca 13227  df-tset 13229  df-ple 13230  df-ds 13232  df-hom 13234  df-cco 13235  df-prds 13350  df-pws 13352  df-0g 13406  df-gsum 13407  df-imas 13413  df-divs 13414  df-mre 13490  df-mrc 13491  df-acs 13493  df-mnd 14369  df-mhm 14417  df-submnd 14418  df-grp 14491  df-minusg 14492  df-sbg 14493  df-mulg 14494  df-subg 14620  df-nsg 14621  df-eqg 14622  df-ghm 14683  df-cntz 14795  df-cmn 15093  df-abl 15094  df-mgp 15328  df-rng 15342  df-cring 15343  df-ur 15344  df-oppr 15407  df-dvdsr 15425  df-unit 15426  df-invr 15456  df-rnghom 15498  df-drng 15516  df-field 15517  df-subrg 15545  df-lmod 15631  df-lss 15692  df-lsp 15731  df-sra 15927  df-rgmod 15928  df-lidl 15929  df-rsp 15930  df-2idl 15986  df-nzr 16012  df-rlreg 16026  df-domn 16027  df-idom 16028  df-assa 16055  df-asp 16056  df-ascl 16057  df-psr 16100  df-mvr 16101  df-mpl 16102  df-evls 16103  df-evl 16104  df-opsr 16108  df-psr1 16259  df-vr1 16260  df-ply1 16261  df-evl1 16263  df-coe1 16264  df-cnfld 16380  df-zrh 16457  df-zn 16460  df-mdeg 19443  df-deg1 19444  df-mon1 19518  df-uc1p 19519  df-q1p 19520  df-r1p 19521  df-lgs 20536
  Copyright terms: Public domain W3C validator