MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem6 Structured version   Unicode version

Theorem 2sqlem6 21153
Description: Lemma for 2sq 21160. If a number that is a sum of two squares is divisible by a number whose prime divisors are all sums of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ [ _i ]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem6.1  |-  ( ph  ->  A  e.  NN )
2sqlem6.2  |-  ( ph  ->  B  e.  NN )
2sqlem6.3  |-  ( ph  ->  A. p  e.  Prime  ( p  ||  B  ->  p  e.  S )
)
2sqlem6.4  |-  ( ph  ->  ( A  x.  B
)  e.  S )
Assertion
Ref Expression
2sqlem6  |-  ( ph  ->  A  e.  S )
Distinct variable groups:    w, p    ph, p    B, p    S, p
Allowed substitution hints:    ph( w)    A( w, p)    B( w)    S( w)

Proof of Theorem 2sqlem6
Dummy variables  n  x  y  z  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqlem6.1 . 2  |-  ( ph  ->  A  e.  NN )
2 2sqlem6.2 . . 3  |-  ( ph  ->  B  e.  NN )
3 2sqlem6.3 . . 3  |-  ( ph  ->  A. p  e.  Prime  ( p  ||  B  ->  p  e.  S )
)
4 breq2 4216 . . . . . . 7  |-  ( x  =  1  ->  (
p  ||  x  <->  p  ||  1
) )
54imbi1d 309 . . . . . 6  |-  ( x  =  1  ->  (
( p  ||  x  ->  p  e.  S )  <-> 
( p  ||  1  ->  p  e.  S ) ) )
65ralbidv 2725 . . . . 5  |-  ( x  =  1  ->  ( A. p  e.  Prime  ( p  ||  x  ->  p  e.  S )  <->  A. p  e.  Prime  (
p  ||  1  ->  p  e.  S ) ) )
7 oveq2 6089 . . . . . . . 8  |-  ( x  =  1  ->  (
m  x.  x )  =  ( m  x.  1 ) )
87eleq1d 2502 . . . . . . 7  |-  ( x  =  1  ->  (
( m  x.  x
)  e.  S  <->  ( m  x.  1 )  e.  S
) )
98imbi1d 309 . . . . . 6  |-  ( x  =  1  ->  (
( ( m  x.  x )  e.  S  ->  m  e.  S )  <-> 
( ( m  x.  1 )  e.  S  ->  m  e.  S ) ) )
109ralbidv 2725 . . . . 5  |-  ( x  =  1  ->  ( A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S )  <->  A. m  e.  NN  ( ( m  x.  1 )  e.  S  ->  m  e.  S ) ) )
116, 10imbi12d 312 . . . 4  |-  ( x  =  1  ->  (
( A. p  e. 
Prime  ( p  ||  x  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S ) )  <->  ( A. p  e.  Prime  ( p  ||  1  ->  p  e.  S
)  ->  A. m  e.  NN  ( ( m  x.  1 )  e.  S  ->  m  e.  S ) ) ) )
12 breq2 4216 . . . . . . 7  |-  ( x  =  y  ->  (
p  ||  x  <->  p  ||  y
) )
1312imbi1d 309 . . . . . 6  |-  ( x  =  y  ->  (
( p  ||  x  ->  p  e.  S )  <-> 
( p  ||  y  ->  p  e.  S ) ) )
1413ralbidv 2725 . . . . 5  |-  ( x  =  y  ->  ( A. p  e.  Prime  ( p  ||  x  ->  p  e.  S )  <->  A. p  e.  Prime  (
p  ||  y  ->  p  e.  S ) ) )
15 oveq2 6089 . . . . . . . 8  |-  ( x  =  y  ->  (
m  x.  x )  =  ( m  x.  y ) )
1615eleq1d 2502 . . . . . . 7  |-  ( x  =  y  ->  (
( m  x.  x
)  e.  S  <->  ( m  x.  y )  e.  S
) )
1716imbi1d 309 . . . . . 6  |-  ( x  =  y  ->  (
( ( m  x.  x )  e.  S  ->  m  e.  S )  <-> 
( ( m  x.  y )  e.  S  ->  m  e.  S ) ) )
1817ralbidv 2725 . . . . 5  |-  ( x  =  y  ->  ( A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S )  <->  A. m  e.  NN  ( ( m  x.  y )  e.  S  ->  m  e.  S ) ) )
1914, 18imbi12d 312 . . . 4  |-  ( x  =  y  ->  (
( A. p  e. 
Prime  ( p  ||  x  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S ) )  <->  ( A. p  e.  Prime  ( p  ||  y  ->  p  e.  S
)  ->  A. m  e.  NN  ( ( m  x.  y )  e.  S  ->  m  e.  S ) ) ) )
20 breq2 4216 . . . . . . 7  |-  ( x  =  z  ->  (
p  ||  x  <->  p  ||  z
) )
2120imbi1d 309 . . . . . 6  |-  ( x  =  z  ->  (
( p  ||  x  ->  p  e.  S )  <-> 
( p  ||  z  ->  p  e.  S ) ) )
2221ralbidv 2725 . . . . 5  |-  ( x  =  z  ->  ( A. p  e.  Prime  ( p  ||  x  ->  p  e.  S )  <->  A. p  e.  Prime  (
p  ||  z  ->  p  e.  S ) ) )
23 oveq2 6089 . . . . . . . 8  |-  ( x  =  z  ->  (
m  x.  x )  =  ( m  x.  z ) )
2423eleq1d 2502 . . . . . . 7  |-  ( x  =  z  ->  (
( m  x.  x
)  e.  S  <->  ( m  x.  z )  e.  S
) )
2524imbi1d 309 . . . . . 6  |-  ( x  =  z  ->  (
( ( m  x.  x )  e.  S  ->  m  e.  S )  <-> 
( ( m  x.  z )  e.  S  ->  m  e.  S ) ) )
2625ralbidv 2725 . . . . 5  |-  ( x  =  z  ->  ( A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S )  <->  A. m  e.  NN  ( ( m  x.  z )  e.  S  ->  m  e.  S ) ) )
2722, 26imbi12d 312 . . . 4  |-  ( x  =  z  ->  (
( A. p  e. 
Prime  ( p  ||  x  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S ) )  <->  ( A. p  e.  Prime  ( p  ||  z  ->  p  e.  S
)  ->  A. m  e.  NN  ( ( m  x.  z )  e.  S  ->  m  e.  S ) ) ) )
28 breq2 4216 . . . . . . 7  |-  ( x  =  ( y  x.  z )  ->  (
p  ||  x  <->  p  ||  (
y  x.  z ) ) )
2928imbi1d 309 . . . . . 6  |-  ( x  =  ( y  x.  z )  ->  (
( p  ||  x  ->  p  e.  S )  <-> 
( p  ||  (
y  x.  z )  ->  p  e.  S
) ) )
3029ralbidv 2725 . . . . 5  |-  ( x  =  ( y  x.  z )  ->  ( A. p  e.  Prime  ( p  ||  x  ->  p  e.  S )  <->  A. p  e.  Prime  (
p  ||  ( y  x.  z )  ->  p  e.  S ) ) )
31 oveq2 6089 . . . . . . . 8  |-  ( x  =  ( y  x.  z )  ->  (
m  x.  x )  =  ( m  x.  ( y  x.  z
) ) )
3231eleq1d 2502 . . . . . . 7  |-  ( x  =  ( y  x.  z )  ->  (
( m  x.  x
)  e.  S  <->  ( m  x.  ( y  x.  z
) )  e.  S
) )
3332imbi1d 309 . . . . . 6  |-  ( x  =  ( y  x.  z )  ->  (
( ( m  x.  x )  e.  S  ->  m  e.  S )  <-> 
( ( m  x.  ( y  x.  z
) )  e.  S  ->  m  e.  S ) ) )
3433ralbidv 2725 . . . . 5  |-  ( x  =  ( y  x.  z )  ->  ( A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S )  <->  A. m  e.  NN  ( ( m  x.  ( y  x.  z
) )  e.  S  ->  m  e.  S ) ) )
3530, 34imbi12d 312 . . . 4  |-  ( x  =  ( y  x.  z )  ->  (
( A. p  e. 
Prime  ( p  ||  x  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S ) )  <->  ( A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  ( y  x.  z ) )  e.  S  ->  m  e.  S ) ) ) )
36 breq2 4216 . . . . . . 7  |-  ( x  =  B  ->  (
p  ||  x  <->  p  ||  B
) )
3736imbi1d 309 . . . . . 6  |-  ( x  =  B  ->  (
( p  ||  x  ->  p  e.  S )  <-> 
( p  ||  B  ->  p  e.  S ) ) )
3837ralbidv 2725 . . . . 5  |-  ( x  =  B  ->  ( A. p  e.  Prime  ( p  ||  x  ->  p  e.  S )  <->  A. p  e.  Prime  (
p  ||  B  ->  p  e.  S ) ) )
39 oveq2 6089 . . . . . . . 8  |-  ( x  =  B  ->  (
m  x.  x )  =  ( m  x.  B ) )
4039eleq1d 2502 . . . . . . 7  |-  ( x  =  B  ->  (
( m  x.  x
)  e.  S  <->  ( m  x.  B )  e.  S
) )
4140imbi1d 309 . . . . . 6  |-  ( x  =  B  ->  (
( ( m  x.  x )  e.  S  ->  m  e.  S )  <-> 
( ( m  x.  B )  e.  S  ->  m  e.  S ) ) )
4241ralbidv 2725 . . . . 5  |-  ( x  =  B  ->  ( A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S )  <->  A. m  e.  NN  ( ( m  x.  B )  e.  S  ->  m  e.  S ) ) )
4338, 42imbi12d 312 . . . 4  |-  ( x  =  B  ->  (
( A. p  e. 
Prime  ( p  ||  x  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S ) )  <->  ( A. p  e.  Prime  ( p  ||  B  ->  p  e.  S
)  ->  A. m  e.  NN  ( ( m  x.  B )  e.  S  ->  m  e.  S ) ) ) )
44 nncn 10008 . . . . . . . . 9  |-  ( m  e.  NN  ->  m  e.  CC )
4544mulid1d 9105 . . . . . . . 8  |-  ( m  e.  NN  ->  (
m  x.  1 )  =  m )
4645eleq1d 2502 . . . . . . 7  |-  ( m  e.  NN  ->  (
( m  x.  1 )  e.  S  <->  m  e.  S ) )
4746biimpd 199 . . . . . 6  |-  ( m  e.  NN  ->  (
( m  x.  1 )  e.  S  ->  m  e.  S )
)
4847rgen 2771 . . . . 5  |-  A. m  e.  NN  ( ( m  x.  1 )  e.  S  ->  m  e.  S )
4948a1i 11 . . . 4  |-  ( A. p  e.  Prime  ( p 
||  1  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  1 )  e.  S  ->  m  e.  S ) )
50 breq1 4215 . . . . . . 7  |-  ( p  =  x  ->  (
p  ||  x  <->  x  ||  x
) )
51 eleq1 2496 . . . . . . 7  |-  ( p  =  x  ->  (
p  e.  S  <->  x  e.  S ) )
5250, 51imbi12d 312 . . . . . 6  |-  ( p  =  x  ->  (
( p  ||  x  ->  p  e.  S )  <-> 
( x  ||  x  ->  x  e.  S ) ) )
5352rspcv 3048 . . . . 5  |-  ( x  e.  Prime  ->  ( A. p  e.  Prime  ( p 
||  x  ->  p  e.  S )  ->  (
x  ||  x  ->  x  e.  S ) ) )
54 prmz 13083 . . . . . . 7  |-  ( x  e.  Prime  ->  x  e.  ZZ )
55 iddvds 12863 . . . . . . 7  |-  ( x  e.  ZZ  ->  x  ||  x )
5654, 55syl 16 . . . . . 6  |-  ( x  e.  Prime  ->  x  ||  x )
57 2sq.1 . . . . . . . . . 10  |-  S  =  ran  ( w  e.  ZZ [ _i ]  |->  ( ( abs `  w
) ^ 2 ) )
58 simprl 733 . . . . . . . . . 10  |-  ( ( ( x  e.  Prime  /\  x  e.  S )  /\  ( m  e.  NN  /\  ( m  x.  x )  e.  S ) )  ->  m  e.  NN )
59 simpll 731 . . . . . . . . . 10  |-  ( ( ( x  e.  Prime  /\  x  e.  S )  /\  ( m  e.  NN  /\  ( m  x.  x )  e.  S ) )  ->  x  e.  Prime )
60 simprr 734 . . . . . . . . . 10  |-  ( ( ( x  e.  Prime  /\  x  e.  S )  /\  ( m  e.  NN  /\  ( m  x.  x )  e.  S ) )  -> 
( m  x.  x
)  e.  S )
61 simplr 732 . . . . . . . . . 10  |-  ( ( ( x  e.  Prime  /\  x  e.  S )  /\  ( m  e.  NN  /\  ( m  x.  x )  e.  S ) )  ->  x  e.  S )
6257, 58, 59, 60, 612sqlem5 21152 . . . . . . . . 9  |-  ( ( ( x  e.  Prime  /\  x  e.  S )  /\  ( m  e.  NN  /\  ( m  x.  x )  e.  S ) )  ->  m  e.  S )
6362expr 599 . . . . . . . 8  |-  ( ( ( x  e.  Prime  /\  x  e.  S )  /\  m  e.  NN )  ->  ( ( m  x.  x )  e.  S  ->  m  e.  S ) )
6463ralrimiva 2789 . . . . . . 7  |-  ( ( x  e.  Prime  /\  x  e.  S )  ->  A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S ) )
6564ex 424 . . . . . 6  |-  ( x  e.  Prime  ->  ( x  e.  S  ->  A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S ) ) )
6656, 65embantd 52 . . . . 5  |-  ( x  e.  Prime  ->  ( ( x  ||  x  ->  x  e.  S )  ->  A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S ) ) )
6753, 66syld 42 . . . 4  |-  ( x  e.  Prime  ->  ( A. p  e.  Prime  ( p 
||  x  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  x )  e.  S  ->  m  e.  S ) ) )
68 prth 555 . . . . 5  |-  ( ( ( A. p  e. 
Prime  ( p  ||  y  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  y )  e.  S  ->  m  e.  S ) )  /\  ( A. p  e.  Prime  ( p 
||  z  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  z )  e.  S  ->  m  e.  S ) ) )  ->  ( ( A. p  e.  Prime  ( p 
||  y  ->  p  e.  S )  /\  A. p  e.  Prime  ( p 
||  z  ->  p  e.  S ) )  -> 
( A. m  e.  NN  ( ( m  x.  y )  e.  S  ->  m  e.  S )  /\  A. m  e.  NN  (
( m  x.  z
)  e.  S  ->  m  e.  S )
) ) )
69 simpr 448 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  ->  p  e.  Prime )
70 eluzelz 10496 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( ZZ>= `  2
)  ->  y  e.  ZZ )
7170ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
y  e.  ZZ )
72 eluzelz 10496 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  ZZ )
7372ad2antlr 708 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
z  e.  ZZ )
74 euclemma 13108 . . . . . . . . . . . . . 14  |-  ( ( p  e.  Prime  /\  y  e.  ZZ  /\  z  e.  ZZ )  ->  (
p  ||  ( y  x.  z )  <->  ( p  ||  y  \/  p  ||  z ) ) )
7569, 71, 73, 74syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
( p  ||  (
y  x.  z )  <-> 
( p  ||  y  \/  p  ||  z ) ) )
7675imbi1d 309 . . . . . . . . . . . 12  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
( ( p  ||  ( y  x.  z
)  ->  p  e.  S )  <->  ( (
p  ||  y  \/  p  ||  z )  ->  p  e.  S )
) )
77 jaob 759 . . . . . . . . . . . 12  |-  ( ( ( p  ||  y  \/  p  ||  z )  ->  p  e.  S
)  <->  ( ( p 
||  y  ->  p  e.  S )  /\  (
p  ||  z  ->  p  e.  S ) ) )
7876, 77syl6bb 253 . . . . . . . . . . 11  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  p  e.  Prime )  -> 
( ( p  ||  ( y  x.  z
)  ->  p  e.  S )  <->  ( (
p  ||  y  ->  p  e.  S )  /\  ( p  ||  z  ->  p  e.  S )
) ) )
7978ralbidva 2721 . . . . . . . . . 10  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( A. p  e.  Prime  ( p 
||  ( y  x.  z )  ->  p  e.  S )  <->  A. p  e.  Prime  ( ( p 
||  y  ->  p  e.  S )  /\  (
p  ||  z  ->  p  e.  S ) ) ) )
80 r19.26 2838 . . . . . . . . . 10  |-  ( A. p  e.  Prime  ( ( p  ||  y  ->  p  e.  S )  /\  ( p  ||  z  ->  p  e.  S ) )  <->  ( A. p  e.  Prime  ( p  ||  y  ->  p  e.  S
)  /\  A. p  e.  Prime  ( p  ||  z  ->  p  e.  S
) ) )
8179, 80syl6bb 253 . . . . . . . . 9  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( A. p  e.  Prime  ( p 
||  ( y  x.  z )  ->  p  e.  S )  <->  ( A. p  e.  Prime  ( p 
||  y  ->  p  e.  S )  /\  A. p  e.  Prime  ( p 
||  z  ->  p  e.  S ) ) ) )
8281biimpa 471 . . . . . . . 8  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  A. p  e.  Prime  (
p  ||  ( y  x.  z )  ->  p  e.  S ) )  -> 
( A. p  e. 
Prime  ( p  ||  y  ->  p  e.  S )  /\  A. p  e. 
Prime  ( p  ||  z  ->  p  e.  S ) ) )
83 oveq1 6088 . . . . . . . . . . . . 13  |-  ( m  =  n  ->  (
m  x.  y )  =  ( n  x.  y ) )
8483eleq1d 2502 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (
( m  x.  y
)  e.  S  <->  ( n  x.  y )  e.  S
) )
85 eleq1 2496 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (
m  e.  S  <->  n  e.  S ) )
8684, 85imbi12d 312 . . . . . . . . . . 11  |-  ( m  =  n  ->  (
( ( m  x.  y )  e.  S  ->  m  e.  S )  <-> 
( ( n  x.  y )  e.  S  ->  n  e.  S ) ) )
8786cbvralv 2932 . . . . . . . . . 10  |-  ( A. m  e.  NN  (
( m  x.  y
)  e.  S  ->  m  e.  S )  <->  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)
8844adantl 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  m  e.  CC )
89 uzssz 10505 . . . . . . . . . . . . . . . . 17  |-  ( ZZ>= ` 
2 )  C_  ZZ
90 zsscn 10290 . . . . . . . . . . . . . . . . 17  |-  ZZ  C_  CC
9189, 90sstri 3357 . . . . . . . . . . . . . . . 16  |-  ( ZZ>= ` 
2 )  C_  CC
92 simpll 731 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  A. p  e.  Prime  (
p  ||  ( y  x.  z )  ->  p  e.  S ) )  -> 
y  e.  ( ZZ>= ` 
2 ) )
9392ad2antrr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  y  e.  ( ZZ>= `  2 )
)
9491, 93sseldi 3346 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  y  e.  CC )
95 simplr 732 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  A. p  e.  Prime  (
p  ||  ( y  x.  z )  ->  p  e.  S ) )  -> 
z  e.  ( ZZ>= ` 
2 ) )
9695ad2antrr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  z  e.  ( ZZ>= `  2 )
)
9791, 96sseldi 3346 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  z  e.  CC )
98 mul32 9233 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( m  x.  y
)  x.  z )  =  ( ( m  x.  z )  x.  y ) )
99 mulass 9078 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( m  x.  y
)  x.  z )  =  ( m  x.  ( y  x.  z
) ) )
10098, 99eqtr3d 2470 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( m  x.  z
)  x.  y )  =  ( m  x.  ( y  x.  z
) ) )
10188, 94, 97, 100syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  ( ( m  x.  z )  x.  y )  =  ( m  x.  (
y  x.  z ) ) )
102101eleq1d 2502 . . . . . . . . . . . . 13  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  ( ( ( m  x.  z
)  x.  y )  e.  S  <->  ( m  x.  ( y  x.  z
) )  e.  S
) )
103 simpr 448 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  m  e.  NN )
104 eluz2b2 10548 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( ZZ>= `  2
)  <->  ( z  e.  NN  /\  1  < 
z ) )
105104simplbi 447 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  NN )
10696, 105syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  z  e.  NN )
107103, 106nnmulcld 10047 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  ( m  x.  z )  e.  NN )
108 simplr 732 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  A. n  e.  NN  ( ( n  x.  y )  e.  S  ->  n  e.  S ) )
109 oveq1 6088 . . . . . . . . . . . . . . . . 17  |-  ( n  =  ( m  x.  z )  ->  (
n  x.  y )  =  ( ( m  x.  z )  x.  y ) )
110109eleq1d 2502 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( m  x.  z )  ->  (
( n  x.  y
)  e.  S  <->  ( (
m  x.  z )  x.  y )  e.  S ) )
111 eleq1 2496 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( m  x.  z )  ->  (
n  e.  S  <->  ( m  x.  z )  e.  S
) )
112110, 111imbi12d 312 . . . . . . . . . . . . . . 15  |-  ( n  =  ( m  x.  z )  ->  (
( ( n  x.  y )  e.  S  ->  n  e.  S )  <-> 
( ( ( m  x.  z )  x.  y )  e.  S  ->  ( m  x.  z
)  e.  S ) ) )
113112rspcv 3048 . . . . . . . . . . . . . 14  |-  ( ( m  x.  z )  e.  NN  ->  ( A. n  e.  NN  ( ( n  x.  y )  e.  S  ->  n  e.  S )  ->  ( ( ( m  x.  z )  x.  y )  e.  S  ->  ( m  x.  z )  e.  S
) ) )
114107, 108, 113sylc 58 . . . . . . . . . . . . 13  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  ( ( ( m  x.  z
)  x.  y )  e.  S  ->  (
m  x.  z )  e.  S ) )
115102, 114sylbird 227 . . . . . . . . . . . 12  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  ( ( m  x.  ( y  x.  z ) )  e.  S  ->  (
m  x.  z )  e.  S ) )
116115imim1d 71 . . . . . . . . . . 11  |-  ( ( ( ( ( y  e.  ( ZZ>= `  2
)  /\  z  e.  ( ZZ>= `  2 )
)  /\  A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S ) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  /\  m  e.  NN )  ->  ( ( ( m  x.  z
)  e.  S  ->  m  e.  S )  ->  ( ( m  x.  ( y  x.  z
) )  e.  S  ->  m  e.  S ) ) )
117116ralimdva 2784 . . . . . . . . . 10  |-  ( ( ( ( y  e.  ( ZZ>= `  2 )  /\  z  e.  ( ZZ>=
`  2 ) )  /\  A. p  e. 
Prime  ( p  ||  (
y  x.  z )  ->  p  e.  S
) )  /\  A. n  e.  NN  (
( n  x.  y
)  e.  S  ->  n  e.  S )
)  ->  ( A. m  e.  NN  (
( m  x.  z
)  e.  S  ->  m  e.  S )  ->  A. m  e.  NN  ( ( m  x.  ( y  x.  z
) )  e.  S  ->  m  e.  S ) ) )
11887, 117sylan2b 462 . . . . . . . . 9  |-  ( ( ( ( y  e.  ( ZZ>= `  2 )  /\  z  e.  ( ZZ>=
`  2 ) )  /\  A. p  e. 
Prime  ( p  ||  (
y  x.  z )  ->  p  e.  S
) )  /\  A. m  e.  NN  (
( m  x.  y
)  e.  S  ->  m  e.  S )
)  ->  ( A. m  e.  NN  (
( m  x.  z
)  e.  S  ->  m  e.  S )  ->  A. m  e.  NN  ( ( m  x.  ( y  x.  z
) )  e.  S  ->  m  e.  S ) ) )
119118expimpd 587 . . . . . . . 8  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  A. p  e.  Prime  (
p  ||  ( y  x.  z )  ->  p  e.  S ) )  -> 
( ( A. m  e.  NN  ( ( m  x.  y )  e.  S  ->  m  e.  S )  /\  A. m  e.  NN  (
( m  x.  z
)  e.  S  ->  m  e.  S )
)  ->  A. m  e.  NN  ( ( m  x.  ( y  x.  z ) )  e.  S  ->  m  e.  S ) ) )
12082, 119embantd 52 . . . . . . 7  |-  ( ( ( y  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  A. p  e.  Prime  (
p  ||  ( y  x.  z )  ->  p  e.  S ) )  -> 
( ( ( A. p  e.  Prime  ( p 
||  y  ->  p  e.  S )  /\  A. p  e.  Prime  ( p 
||  z  ->  p  e.  S ) )  -> 
( A. m  e.  NN  ( ( m  x.  y )  e.  S  ->  m  e.  S )  /\  A. m  e.  NN  (
( m  x.  z
)  e.  S  ->  m  e.  S )
) )  ->  A. m  e.  NN  ( ( m  x.  ( y  x.  z ) )  e.  S  ->  m  e.  S ) ) )
121120ex 424 . . . . . 6  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( A. p  e.  Prime  ( p 
||  ( y  x.  z )  ->  p  e.  S )  ->  (
( ( A. p  e.  Prime  ( p  ||  y  ->  p  e.  S
)  /\  A. p  e.  Prime  ( p  ||  z  ->  p  e.  S
) )  ->  ( A. m  e.  NN  ( ( m  x.  y )  e.  S  ->  m  e.  S )  /\  A. m  e.  NN  ( ( m  x.  z )  e.  S  ->  m  e.  S ) ) )  ->  A. m  e.  NN  ( ( m  x.  ( y  x.  z
) )  e.  S  ->  m  e.  S ) ) ) )
122121com23 74 . . . . 5  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( (
( A. p  e. 
Prime  ( p  ||  y  ->  p  e.  S )  /\  A. p  e. 
Prime  ( p  ||  z  ->  p  e.  S ) )  ->  ( A. m  e.  NN  (
( m  x.  y
)  e.  S  ->  m  e.  S )  /\  A. m  e.  NN  ( ( m  x.  z )  e.  S  ->  m  e.  S ) ) )  ->  ( A. p  e.  Prime  ( p  ||  ( y  x.  z )  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  ( y  x.  z
) )  e.  S  ->  m  e.  S ) ) ) )
12368, 122syl5 30 . . . 4  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( (
( A. p  e. 
Prime  ( p  ||  y  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  y )  e.  S  ->  m  e.  S ) )  /\  ( A. p  e.  Prime  ( p 
||  z  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  z )  e.  S  ->  m  e.  S ) ) )  ->  ( A. p  e.  Prime  ( p  ||  ( y  x.  z
)  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  ( y  x.  z ) )  e.  S  ->  m  e.  S ) ) ) )
12411, 19, 27, 35, 43, 49, 67, 123prmind 13091 . . 3  |-  ( B  e.  NN  ->  ( A. p  e.  Prime  ( p  ||  B  ->  p  e.  S )  ->  A. m  e.  NN  ( ( m  x.  B )  e.  S  ->  m  e.  S ) ) )
1252, 3, 124sylc 58 . 2  |-  ( ph  ->  A. m  e.  NN  ( ( m  x.  B )  e.  S  ->  m  e.  S ) )
126 2sqlem6.4 . 2  |-  ( ph  ->  ( A  x.  B
)  e.  S )
127 oveq1 6088 . . . . 5  |-  ( m  =  A  ->  (
m  x.  B )  =  ( A  x.  B ) )
128127eleq1d 2502 . . . 4  |-  ( m  =  A  ->  (
( m  x.  B
)  e.  S  <->  ( A  x.  B )  e.  S
) )
129 eleq1 2496 . . . 4  |-  ( m  =  A  ->  (
m  e.  S  <->  A  e.  S ) )
130128, 129imbi12d 312 . . 3  |-  ( m  =  A  ->  (
( ( m  x.  B )  e.  S  ->  m  e.  S )  <-> 
( ( A  x.  B )  e.  S  ->  A  e.  S ) ) )
131130rspcv 3048 . 2  |-  ( A  e.  NN  ->  ( A. m  e.  NN  ( ( m  x.  B )  e.  S  ->  m  e.  S )  ->  ( ( A  x.  B )  e.  S  ->  A  e.  S ) ) )
1321, 125, 126, 131syl3c 59 1  |-  ( ph  ->  A  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2705   class class class wbr 4212    e. cmpt 4266   ran crn 4879   ` cfv 5454  (class class class)co 6081   CCcc 8988   1c1 8991    x. cmul 8995    < clt 9120   NNcn 10000   2c2 10049   ZZcz 10282   ZZ>=cuz 10488   ^cexp 11382   abscabs 12039    || cdivides 12852   Primecprime 13079   ZZ [ _i ]cgz 13297
This theorem is referenced by:  2sqlem8  21156
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-fz 11044  df-fl 11202  df-mod 11251  df-seq 11324  df-exp 11383  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-dvds 12853  df-gcd 13007  df-prm 13080  df-gz 13298
  Copyright terms: Public domain W3C validator