Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2uasban Structured version   Unicode version

Theorem 2uasban 28821
Description: Distribute the unabbreviated form of proper substitution in and out of a conjunction. (Contributed by Alan Sare, 31-May-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
2uasban  |-  ( E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ( ph  /\ 
ps ) )  <->  ( E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ph )  /\  E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ps ) ) )
Distinct variable groups:    x, u    y, u    x, v    y,
v
Allowed substitution hints:    ph( x, y, v, u)    ps( x, y, v, u)

Proof of Theorem 2uasban
StepHypRef Expression
1 biid 229 . 2  |-  ( ( E. x E. y
( ( x  =  u  /\  y  =  v )  /\  ph )  /\  E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ps ) )  <->  ( E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ph )  /\  E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ps ) ) )
212uasbanh 28820 1  |-  ( E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ( ph  /\ 
ps ) )  <->  ( E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ph )  /\  E. x E. y ( ( x  =  u  /\  y  =  v )  /\  ps ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360   E.wex 1551    = wceq 1654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-clab 2430  df-cleq 2436  df-clel 2439  df-ne 2608  df-v 2967
  Copyright terms: Public domain W3C validator