MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anandis Unicode version

Theorem 3anandis 1285
Description: Inference that undistributes a triple conjunction in the antecedent. (Contributed by NM, 18-Apr-2007.)
Hypothesis
Ref Expression
3anandis.1  |-  ( ( ( ph  /\  ps )  /\  ( ph  /\  ch )  /\  ( ph  /\  th ) )  ->  ta )
Assertion
Ref Expression
3anandis  |-  ( (
ph  /\  ( ps  /\ 
ch  /\  th )
)  ->  ta )

Proof of Theorem 3anandis
StepHypRef Expression
1 simpl 444 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch  /\  th )
)  ->  ph )
2 simpr1 963 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch  /\  th )
)  ->  ps )
3 simpr2 964 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch  /\  th )
)  ->  ch )
4 simpr3 965 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch  /\  th )
)  ->  th )
5 3anandis.1 . 2  |-  ( ( ( ph  /\  ps )  /\  ( ph  /\  ch )  /\  ( ph  /\  th ) )  ->  ta )
61, 2, 1, 3, 1, 4, 5syl222anc 1200 1  |-  ( (
ph  /\  ( ps  /\ 
ch  /\  th )
)  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938
  Copyright terms: Public domain W3C validator