Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3biant1d Unicode version

Theorem 3biant1d 28180
Description: A wff is equivalent to its threefold conjunction with single truth, analogous to biantrud 493. (Contributed by Alexander van der Vekens, 26-Sep-2017.)
Hypothesis
Ref Expression
3biantd.1  |-  ( ph  ->  th )
Assertion
Ref Expression
3biant1d  |-  ( ph  ->  ( ( ch  /\  ps )  <->  ( th  /\  ch  /\  ps ) ) )

Proof of Theorem 3biant1d
StepHypRef Expression
1 3biantd.1 . . 3  |-  ( ph  ->  th )
21biantrurd 494 . 2  |-  ( ph  ->  ( ( ch  /\  ps )  <->  ( th  /\  ( ch  /\  ps )
) ) )
3 3anass 938 . 2  |-  ( ( th  /\  ch  /\  ps )  <->  ( th  /\  ( ch  /\  ps )
) )
42, 3syl6bbr 254 1  |-  ( ph  ->  ( ( ch  /\  ps )  <->  ( th  /\  ch  /\  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator