MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3brtr3i Unicode version

Theorem 3brtr3i 4182
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.)
Hypotheses
Ref Expression
3brtr3.1  |-  A R B
3brtr3.2  |-  A  =  C
3brtr3.3  |-  B  =  D
Assertion
Ref Expression
3brtr3i  |-  C R D

Proof of Theorem 3brtr3i
StepHypRef Expression
1 3brtr3.2 . . 3  |-  A  =  C
2 3brtr3.1 . . 3  |-  A R B
31, 2eqbrtrri 4176 . 2  |-  C R B
4 3brtr3.3 . 2  |-  B  =  D
53, 4breqtri 4178 1  |-  C R D
Colors of variables: wff set class
Syntax hints:    = wceq 1649   class class class wbr 4155
This theorem is referenced by:  supsrlem  8921  ef01bndlem  12714  pige3  20294  log2ublem1  20655  log2ub  20658  ppiublem1  20855  logfacrlim2  20879  chebbnd1  21035  nmoptri2i  23452
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-rab 2660  df-v 2903  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-sn 3765  df-pr 3766  df-op 3768  df-br 4156
  Copyright terms: Public domain W3C validator