Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dimlem4OLDN Unicode version

Theorem 3dimlem4OLDN 30276
Description: Lemma for 3dim1 30278. (Contributed by NM, 25-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
3dim0.j  |-  .\/  =  ( join `  K )
3dim0.l  |-  .<_  =  ( le `  K )
3dim0.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
3dimlem4OLDN  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q 
.\/  R ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R ) )  /\  -.  P  .<_  ( ( Q 
.\/  R )  .\/  S ) )  ->  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )

Proof of Theorem 3dimlem4OLDN
StepHypRef Expression
1 simp2l 981 . 2  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q 
.\/  R ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R ) )  /\  -.  P  .<_  ( ( Q 
.\/  R )  .\/  S ) )  ->  P  =/=  Q )
2 simp2r 982 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q 
.\/  R ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R ) )  /\  -.  P  .<_  ( ( Q 
.\/  R )  .\/  S ) )  ->  -.  P  .<_  ( Q  .\/  R ) )
3 simp11 985 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  K  e.  HL )
4 simp2l 981 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  R  e.  A )
5 simp12 986 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  P  e.  A )
6 simp13 987 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  Q  e.  A )
7 simp3l 983 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  Q  =/=  R )
87necomd 2542 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  R  =/=  Q )
9 3dim0.l . . . . . . 7  |-  .<_  =  ( le `  K )
10 3dim0.j . . . . . . 7  |-  .\/  =  ( join `  K )
11 3dim0.a . . . . . . 7  |-  A  =  ( Atoms `  K )
129, 10, 11hlatexch2 30207 . . . . . 6  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  P  e.  A  /\  Q  e.  A
)  /\  R  =/=  Q )  ->  ( R  .<_  ( P  .\/  Q
)  ->  P  .<_  ( R  .\/  Q ) ) )
133, 4, 5, 6, 8, 12syl131anc 1195 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( R  .<_  ( P 
.\/  Q )  ->  P  .<_  ( R  .\/  Q ) ) )
1410, 11hlatjcom 30179 . . . . . . 7  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  R  e.  A )  ->  ( Q  .\/  R
)  =  ( R 
.\/  Q ) )
153, 6, 4, 14syl3anc 1182 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( Q  .\/  R
)  =  ( R 
.\/  Q ) )
1615breq2d 4051 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( P  .<_  ( Q 
.\/  R )  <->  P  .<_  ( R  .\/  Q ) ) )
1713, 16sylibrd 225 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( R  .<_  ( P 
.\/  Q )  ->  P  .<_  ( Q  .\/  R ) ) )
18173ad2ant1 976 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q 
.\/  R ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R ) )  /\  -.  P  .<_  ( ( Q 
.\/  R )  .\/  S ) )  ->  ( R  .<_  ( P  .\/  Q )  ->  P  .<_  ( Q  .\/  R ) ) )
192, 18mtod 168 . 2  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q 
.\/  R ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R ) )  /\  -.  P  .<_  ( ( Q 
.\/  R )  .\/  S ) )  ->  -.  R  .<_  ( P  .\/  Q ) )
20 simp3 957 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q 
.\/  R ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R ) )  /\  -.  P  .<_  ( ( Q 
.\/  R )  .\/  S ) )  ->  -.  P  .<_  ( ( Q 
.\/  R )  .\/  S ) )
21 hllat 30175 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
223, 21syl 15 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  K  e.  Lat )
23 eqid 2296 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
2423, 11atbase 30101 . . . . . . . 8  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
256, 24syl 15 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  Q  e.  ( Base `  K ) )
2623, 11atbase 30101 . . . . . . . 8  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
274, 26syl 15 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  R  e.  ( Base `  K ) )
2823, 11atbase 30101 . . . . . . . 8  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
295, 28syl 15 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  P  e.  ( Base `  K ) )
3023, 10latjrot 14222 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  R  e.  ( Base `  K )  /\  P  e.  ( Base `  K
) ) )  -> 
( ( Q  .\/  R )  .\/  P )  =  ( ( P 
.\/  Q )  .\/  R ) )
3122, 25, 27, 29, 30syl13anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( ( Q  .\/  R )  .\/  P )  =  ( ( P 
.\/  Q )  .\/  R ) )
3231breq2d 4051 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( S  .<_  ( ( Q  .\/  R ) 
.\/  P )  <->  S  .<_  ( ( P  .\/  Q
)  .\/  R )
) )
33 simp2r 982 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  S  e.  A )
3423, 10, 11hlatjcl 30178 . . . . . . 7  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  R  e.  A )  ->  ( Q  .\/  R
)  e.  ( Base `  K ) )
353, 6, 4, 34syl3anc 1182 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( Q  .\/  R
)  e.  ( Base `  K ) )
36 simp3r 984 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  ->  -.  S  .<_  ( Q 
.\/  R ) )
3723, 9, 10, 11hlexch1 30193 . . . . . 6  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  P  e.  A  /\  ( Q  .\/  R
)  e.  ( Base `  K ) )  /\  -.  S  .<_  ( Q 
.\/  R ) )  ->  ( S  .<_  ( ( Q  .\/  R
)  .\/  P )  ->  P  .<_  ( ( Q  .\/  R )  .\/  S ) ) )
383, 33, 5, 35, 36, 37syl131anc 1195 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( S  .<_  ( ( Q  .\/  R ) 
.\/  P )  ->  P  .<_  ( ( Q 
.\/  R )  .\/  S ) ) )
3932, 38sylbird 226 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q  .\/  R
) ) )  -> 
( S  .<_  ( ( P  .\/  Q ) 
.\/  R )  ->  P  .<_  ( ( Q 
.\/  R )  .\/  S ) ) )
40393ad2ant1 976 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q 
.\/  R ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R ) )  /\  -.  P  .<_  ( ( Q 
.\/  R )  .\/  S ) )  ->  ( S  .<_  ( ( P 
.\/  Q )  .\/  R )  ->  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )
4120, 40mtod 168 . 2  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q 
.\/  R ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R ) )  /\  -.  P  .<_  ( ( Q 
.\/  R )  .\/  S ) )  ->  -.  S  .<_  ( ( P 
.\/  Q )  .\/  R ) )
421, 19, 413jca 1132 1  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  S  .<_  ( Q 
.\/  R ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R ) )  /\  -.  P  .<_  ( ( Q 
.\/  R )  .\/  S ) )  ->  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   joincjn 14094   Latclat 14167   Atomscatm 30075   HLchlt 30162
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-poset 14096  df-plt 14108  df-lub 14124  df-join 14126  df-lat 14168  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163
  Copyright terms: Public domain W3C validator