Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dimlem4a Unicode version

Theorem 3dimlem4a 30274
Description: Lemma for 3dim3 30280. (Contributed by NM, 27-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j  |-  .\/  =  ( join `  K )
3dim0.l  |-  .<_  =  ( le `  K )
3dim0.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
3dimlem4a  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( -.  S  .<_  ( Q  .\/  R )  /\  -.  P  .<_  ( Q  .\/  R
)  /\  -.  P  .<_  ( ( Q  .\/  R )  .\/  S ) ) )  ->  -.  S  .<_  ( ( P 
.\/  Q )  .\/  R ) )

Proof of Theorem 3dimlem4a
StepHypRef Expression
1 simp33 993 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( -.  S  .<_  ( Q  .\/  R )  /\  -.  P  .<_  ( Q  .\/  R
)  /\  -.  P  .<_  ( ( Q  .\/  R )  .\/  S ) ) )  ->  -.  P  .<_  ( ( Q 
.\/  R )  .\/  S ) )
2 simp11 985 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( -.  S  .<_  ( Q  .\/  R )  /\  -.  P  .<_  ( Q  .\/  R
)  /\  -.  P  .<_  ( ( Q  .\/  R )  .\/  S ) ) )  ->  K  e.  HL )
3 hllat 30175 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( -.  S  .<_  ( Q  .\/  R )  /\  -.  P  .<_  ( Q  .\/  R
)  /\  -.  P  .<_  ( ( Q  .\/  R )  .\/  S ) ) )  ->  K  e.  Lat )
5 simp13 987 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( -.  S  .<_  ( Q  .\/  R )  /\  -.  P  .<_  ( Q  .\/  R
)  /\  -.  P  .<_  ( ( Q  .\/  R )  .\/  S ) ) )  ->  Q  e.  A )
6 eqid 2296 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
7 3dim0.a . . . . . . 7  |-  A  =  ( Atoms `  K )
86, 7atbase 30101 . . . . . 6  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
95, 8syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( -.  S  .<_  ( Q  .\/  R )  /\  -.  P  .<_  ( Q  .\/  R
)  /\  -.  P  .<_  ( ( Q  .\/  R )  .\/  S ) ) )  ->  Q  e.  ( Base `  K
) )
10 simp2l 981 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( -.  S  .<_  ( Q  .\/  R )  /\  -.  P  .<_  ( Q  .\/  R
)  /\  -.  P  .<_  ( ( Q  .\/  R )  .\/  S ) ) )  ->  R  e.  A )
116, 7atbase 30101 . . . . . 6  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
1210, 11syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( -.  S  .<_  ( Q  .\/  R )  /\  -.  P  .<_  ( Q  .\/  R
)  /\  -.  P  .<_  ( ( Q  .\/  R )  .\/  S ) ) )  ->  R  e.  ( Base `  K
) )
13 simp12 986 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( -.  S  .<_  ( Q  .\/  R )  /\  -.  P  .<_  ( Q  .\/  R
)  /\  -.  P  .<_  ( ( Q  .\/  R )  .\/  S ) ) )  ->  P  e.  A )
146, 7atbase 30101 . . . . . 6  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
1513, 14syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( -.  S  .<_  ( Q  .\/  R )  /\  -.  P  .<_  ( Q  .\/  R
)  /\  -.  P  .<_  ( ( Q  .\/  R )  .\/  S ) ) )  ->  P  e.  ( Base `  K
) )
16 3dim0.j . . . . . 6  |-  .\/  =  ( join `  K )
176, 16latjrot 14222 . . . . 5  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  R  e.  ( Base `  K )  /\  P  e.  ( Base `  K
) ) )  -> 
( ( Q  .\/  R )  .\/  P )  =  ( ( P 
.\/  Q )  .\/  R ) )
184, 9, 12, 15, 17syl13anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( -.  S  .<_  ( Q  .\/  R )  /\  -.  P  .<_  ( Q  .\/  R
)  /\  -.  P  .<_  ( ( Q  .\/  R )  .\/  S ) ) )  ->  (
( Q  .\/  R
)  .\/  P )  =  ( ( P 
.\/  Q )  .\/  R ) )
1918breq2d 4051 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( -.  S  .<_  ( Q  .\/  R )  /\  -.  P  .<_  ( Q  .\/  R
)  /\  -.  P  .<_  ( ( Q  .\/  R )  .\/  S ) ) )  ->  ( S  .<_  ( ( Q 
.\/  R )  .\/  P )  <->  S  .<_  ( ( P  .\/  Q ) 
.\/  R ) ) )
20 simp2r 982 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( -.  S  .<_  ( Q  .\/  R )  /\  -.  P  .<_  ( Q  .\/  R
)  /\  -.  P  .<_  ( ( Q  .\/  R )  .\/  S ) ) )  ->  S  e.  A )
216, 16latjcl 14172 . . . . 5  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  R  e.  ( Base `  K
) )  ->  ( Q  .\/  R )  e.  ( Base `  K
) )
224, 9, 12, 21syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( -.  S  .<_  ( Q  .\/  R )  /\  -.  P  .<_  ( Q  .\/  R
)  /\  -.  P  .<_  ( ( Q  .\/  R )  .\/  S ) ) )  ->  ( Q  .\/  R )  e.  ( Base `  K
) )
23 simp31 991 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( -.  S  .<_  ( Q  .\/  R )  /\  -.  P  .<_  ( Q  .\/  R
)  /\  -.  P  .<_  ( ( Q  .\/  R )  .\/  S ) ) )  ->  -.  S  .<_  ( Q  .\/  R ) )
24 3dim0.l . . . . 5  |-  .<_  =  ( le `  K )
256, 24, 16, 7hlexch1 30193 . . . 4  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  P  e.  A  /\  ( Q  .\/  R
)  e.  ( Base `  K ) )  /\  -.  S  .<_  ( Q 
.\/  R ) )  ->  ( S  .<_  ( ( Q  .\/  R
)  .\/  P )  ->  P  .<_  ( ( Q  .\/  R )  .\/  S ) ) )
262, 20, 13, 22, 23, 25syl131anc 1195 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( -.  S  .<_  ( Q  .\/  R )  /\  -.  P  .<_  ( Q  .\/  R
)  /\  -.  P  .<_  ( ( Q  .\/  R )  .\/  S ) ) )  ->  ( S  .<_  ( ( Q 
.\/  R )  .\/  P )  ->  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )
2719, 26sylbird 226 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( -.  S  .<_  ( Q  .\/  R )  /\  -.  P  .<_  ( Q  .\/  R
)  /\  -.  P  .<_  ( ( Q  .\/  R )  .\/  S ) ) )  ->  ( S  .<_  ( ( P 
.\/  Q )  .\/  R )  ->  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )
281, 27mtod 168 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( -.  S  .<_  ( Q  .\/  R )  /\  -.  P  .<_  ( Q  .\/  R
)  /\  -.  P  .<_  ( ( Q  .\/  R )  .\/  S ) ) )  ->  -.  S  .<_  ( ( P 
.\/  Q )  .\/  R ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   joincjn 14094   Latclat 14167   Atomscatm 30075   HLchlt 30162
This theorem is referenced by:  3dimlem4  30275  3dim3  30280
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-poset 14096  df-lub 14124  df-join 14126  df-lat 14168  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163
  Copyright terms: Public domain W3C validator