MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3eltr3i Unicode version

Theorem 3eltr3i 2467
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr3.1  |-  A  e.  B
3eltr3.2  |-  A  =  C
3eltr3.3  |-  B  =  D
Assertion
Ref Expression
3eltr3i  |-  C  e.  D

Proof of Theorem 3eltr3i
StepHypRef Expression
1 3eltr3.2 . 2  |-  A  =  C
2 3eltr3.1 . . 3  |-  A  e.  B
3 3eltr3.3 . . 3  |-  B  =  D
42, 3eleqtri 2461 . 2  |-  A  e.  D
51, 4eqeltrri 2460 1  |-  C  e.  D
Colors of variables: wff set class
Syntax hints:    = wceq 1649    e. wcel 1717
This theorem is referenced by:  raddcn  24121
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-11 1753  ax-ext 2370
This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1548  df-cleq 2382  df-clel 2385
  Copyright terms: Public domain W3C validator