MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3eltr4i Structured version   Unicode version

Theorem 3eltr4i 2515
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr4.1  |-  A  e.  B
3eltr4.2  |-  C  =  A
3eltr4.3  |-  D  =  B
Assertion
Ref Expression
3eltr4i  |-  C  e.  D

Proof of Theorem 3eltr4i
StepHypRef Expression
1 3eltr4.2 . 2  |-  C  =  A
2 3eltr4.1 . . 3  |-  A  e.  B
3 3eltr4.3 . . 3  |-  D  =  B
42, 3eleqtrri 2509 . 2  |-  A  e.  D
51, 4eqeltri 2506 1  |-  C  e.  D
Colors of variables: wff set class
Syntax hints:    = wceq 1652    e. wcel 1725
This theorem is referenced by:  oancom  7606  0r  8955  1sr  8956  m1r  8957  lmxrge0  24337  brsigarn  24538  sinccvglem  25109
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-11 1761  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551  df-cleq 2429  df-clel 2432
  Copyright terms: Public domain W3C validator