Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3gencl Structured version   Unicode version

Theorem 3gencl 2992
 Description: Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.)
Hypotheses
Ref Expression
3gencl.1
3gencl.2
3gencl.3
3gencl.4
3gencl.5
3gencl.6
3gencl.7
Assertion
Ref Expression
3gencl
Distinct variable groups:   ,,   ,,   ,   ,,   ,,   ,   ,   ,
Allowed substitution hints:   (,,)   (,)   (,)   (,)   (,,)   (,,)   (,,)   ()   ()   ()   (,)   (,,)

Proof of Theorem 3gencl
StepHypRef Expression
1 3gencl.3 . . . . 5
2 df-rex 2717 . . . . 5
31, 2bitri 242 . . . 4
4 3gencl.6 . . . . 5
54imbi2d 309 . . . 4
6 3gencl.1 . . . . . 6
7 3gencl.2 . . . . . 6
8 3gencl.4 . . . . . . 7
98imbi2d 309 . . . . . 6
10 3gencl.5 . . . . . . 7
1110imbi2d 309 . . . . . 6
12 3gencl.7 . . . . . . 7
13123expia 1156 . . . . . 6
146, 7, 9, 11, 132gencl 2991 . . . . 5
1514com12 30 . . . 4
163, 5, 15gencl 2990 . . 3
1716com12 30 . 2
18173impia 1151 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wa 360   w3a 937  wex 1551   wceq 1653   wcel 1727  wrex 2712 This theorem is referenced by:  axpre-lttrn  9072  axpre-ltadd  9073 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627 This theorem depends on definitions:  df-bi 179  df-an 362  df-3an 939  df-ex 1552  df-rex 2717
 Copyright terms: Public domain W3C validator