MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3impdir Unicode version

Theorem 3impdir 1238
Description: Importation inference (undistribute conjunction). (Contributed by NM, 20-Aug-1995.)
Hypothesis
Ref Expression
3impdir.1  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  ps ) )  ->  th )
Assertion
Ref Expression
3impdir  |-  ( (
ph  /\  ch  /\  ps )  ->  th )

Proof of Theorem 3impdir
StepHypRef Expression
1 3impdir.1 . . 3  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  ps ) )  ->  th )
21anandirs 804 . 2  |-  ( ( ( ph  /\  ch )  /\  ps )  ->  th )
323impa 1146 1  |-  ( (
ph  /\  ch  /\  ps )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934
This theorem is referenced by:  divcan7  9485  ccatrcan  11481  his7  21685  his2sub2  21688  hoadddir  22400  nndivsub  24968  eel3132  28800  3impdirp1  28905
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator