MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3impexpbicom Structured version   Unicode version

Theorem 3impexpbicom 1376
Description: 3impexp 1375 with biconditional consequent of antecedent that is commuted in consequent. Derived automatically from 3impexpVD 28895. (Contributed by Alan Sare, 31-Dec-2011.) (New usage is discouraged.) TODO: decide if this is worth keeping.
Assertion
Ref Expression
3impexpbicom  |-  ( ( ( ph  /\  ps  /\ 
ch )  ->  ( th 
<->  ta ) )  <->  ( ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th )
) ) ) )

Proof of Theorem 3impexpbicom
StepHypRef Expression
1 bicom 192 . . . 4  |-  ( ( th  <->  ta )  <->  ( ta  <->  th ) )
2 imbi2 315 . . . . 5  |-  ( ( ( th  <->  ta )  <->  ( ta  <->  th ) )  -> 
( ( ( ph  /\ 
ps  /\  ch )  ->  ( th  <->  ta )
)  <->  ( ( ph  /\ 
ps  /\  ch )  ->  ( ta  <->  th )
) ) )
32biimpcd 216 . . . 4  |-  ( ( ( ph  /\  ps  /\ 
ch )  ->  ( th 
<->  ta ) )  -> 
( ( ( th  <->  ta )  <->  ( ta  <->  th )
)  ->  ( ( ph  /\  ps  /\  ch )  ->  ( ta  <->  th )
) ) )
41, 3mpi 17 . . 3  |-  ( ( ( ph  /\  ps  /\ 
ch )  ->  ( th 
<->  ta ) )  -> 
( ( ph  /\  ps  /\  ch )  -> 
( ta  <->  th )
) )
543expd 1170 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  ->  ( th 
<->  ta ) )  -> 
( ph  ->  ( ps 
->  ( ch  ->  ( ta 
<->  th ) ) ) ) )
6 3impexp 1375 . . . 4  |-  ( ( ( ph  /\  ps  /\ 
ch )  ->  ( ta 
<->  th ) )  <->  ( ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th )
) ) ) )
76biimpri 198 . . 3  |-  ( (
ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th ) ) ) )  ->  ( ( ph  /\ 
ps  /\  ch )  ->  ( ta  <->  th )
) )
87, 1syl6ibr 219 . 2  |-  ( (
ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th ) ) ) )  ->  ( ( ph  /\ 
ps  /\  ch )  ->  ( th  <->  ta )
) )
95, 8impbii 181 1  |-  ( ( ( ph  /\  ps  /\ 
ch )  ->  ( th 
<->  ta ) )  <->  ( ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th )
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936
This theorem is referenced by:  3impexpbicomiVD  28897
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938
  Copyright terms: Public domain W3C validator