Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3impexpbicomVD Unicode version

Theorem 3impexpbicomVD 28949
Description: Virtual deduction proof of 3impexpbicom 1357. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: 2:: 3:1,2,?: e10 28772 4:3,?: e1_ 28704 5:4: 6:: 7:6,?: e1_ 28704 8:7,2,?: e10 28772 9:8: qed:5,9,?: e00 28857
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
3impexpbicomVD

Proof of Theorem 3impexpbicomVD
StepHypRef Expression
1 idn1 28641 . . . . 5
2 bicom 191 . . . . 5
3 imbi2 314 . . . . . 6
43biimpcd 215 . . . . 5
51, 2, 4e10 28772 . . . 4
6 3impexp 1356 . . . . 5
76biimpi 186 . . . 4
85, 7e1_ 28704 . . 3
98in1 28638 . 2
10 idn1 28641 . . . . 5
116biimpri 197 . . . . 5
1210, 11e1_ 28704 . . . 4
133biimprcd 216 . . . 4
1412, 2, 13e10 28772 . . 3
1514in1 28638 . 2
16 bi3 179 . 2
179, 15, 16e00 28857 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 176   w3a 934 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8 This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-vd1 28637
 Copyright terms: Public domain W3C validator