Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3jaoian Structured version   Unicode version

Theorem 3jaoian 1249
 Description: Disjunction of 3 antecedents (inference). (Contributed by NM, 14-Oct-2005.)
Hypotheses
Ref Expression
3jaoian.1
3jaoian.2
3jaoian.3
Assertion
Ref Expression
3jaoian

Proof of Theorem 3jaoian
StepHypRef Expression
1 3jaoian.1 . . . 4
21ex 424 . . 3
3 3jaoian.2 . . . 4
43ex 424 . . 3
5 3jaoian.3 . . . 4
65ex 424 . . 3
72, 4, 63jaoi 1247 . 2
87imp 419 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   w3o 935 This theorem is referenced by:  xrltnsym  10730  xrlttri  10732  xrlttr  10733  qbtwnxr  10786  xltnegi  10802  xaddcom  10824  xnegdi  10827  xaddeq0  24119  3ccased  25176 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938
 Copyright terms: Public domain W3C validator