MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3jaoian Structured version   Unicode version

Theorem 3jaoian 1249
Description: Disjunction of 3 antecedents (inference). (Contributed by NM, 14-Oct-2005.)
Hypotheses
Ref Expression
3jaoian.1  |-  ( (
ph  /\  ps )  ->  ch )
3jaoian.2  |-  ( ( th  /\  ps )  ->  ch )
3jaoian.3  |-  ( ( ta  /\  ps )  ->  ch )
Assertion
Ref Expression
3jaoian  |-  ( ( ( ph  \/  th  \/  ta )  /\  ps )  ->  ch )

Proof of Theorem 3jaoian
StepHypRef Expression
1 3jaoian.1 . . . 4  |-  ( (
ph  /\  ps )  ->  ch )
21ex 424 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
3 3jaoian.2 . . . 4  |-  ( ( th  /\  ps )  ->  ch )
43ex 424 . . 3  |-  ( th 
->  ( ps  ->  ch ) )
5 3jaoian.3 . . . 4  |-  ( ( ta  /\  ps )  ->  ch )
65ex 424 . . 3  |-  ( ta 
->  ( ps  ->  ch ) )
72, 4, 63jaoi 1247 . 2  |-  ( (
ph  \/  th  \/  ta )  ->  ( ps  ->  ch ) )
87imp 419 1  |-  ( ( ( ph  \/  th  \/  ta )  /\  ps )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    \/ w3o 935
This theorem is referenced by:  xrltnsym  10730  xrlttri  10732  xrlttr  10733  qbtwnxr  10786  xltnegi  10802  xaddcom  10824  xnegdi  10827  xaddeq0  24119  3ccased  25176
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938
  Copyright terms: Public domain W3C validator