MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix2 Unicode version

Theorem 3mix2 1125
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix2  |-  ( ph  ->  ( ps  \/  ph  \/  ch ) )

Proof of Theorem 3mix2
StepHypRef Expression
1 3mix1 1124 . 2  |-  ( ph  ->  ( ph  \/  ch  \/  ps ) )
2 3orrot 940 . 2  |-  ( ( ps  \/  ph  \/  ch )  <->  ( ph  \/  ch  \/  ps ) )
31, 2sylibr 203 1  |-  ( ph  ->  ( ps  \/  ph  \/  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 933
This theorem is referenced by:  3mix2i  1128  3jaob  1244  onzsl  4653  sosn  4775  elfiun  7199  sornom  7919  fpwwe2lem13  8280  dyaddisjlem  18966  ostth  20804  3mix2d  24083  sltsolem1  24393  nodenselem8  24413  sgplpte21d1  26242  xsyysx  26248  fnwe2lem3  27252
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-3or 935
  Copyright terms: Public domain W3C validator