Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3orbi123VD Structured version   Unicode version

Theorem 3orbi123VD 29024
Description: Virtual deduction proof of 3orbi123 28656. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: 2:1,?: e1_ 28790 3:1,?: e1_ 28790 4:1,?: e1_ 28790 5:2,3,?: e11 28851 6:5,4,?: e11 28851 7:?: 8:6,7,?: e10 28857 9:?: 10:8,9,?: e10 28857 qed:10:
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
3orbi123VD

Proof of Theorem 3orbi123VD
StepHypRef Expression
1 idn1 28727 . . . . . . 7
2 simp1 958 . . . . . . 7
31, 2e1_ 28790 . . . . . 6
4 simp2 959 . . . . . . 7
51, 4e1_ 28790 . . . . . 6
6 pm4.39 843 . . . . . . 7
76ex 425 . . . . . 6
83, 5, 7e11 28851 . . . . 5
9 simp3 960 . . . . . 6
101, 9e1_ 28790 . . . . 5
11 pm4.39 843 . . . . . 6
1211ex 425 . . . . 5
138, 10, 12e11 28851 . . . 4
14 df-3or 938 . . . . 5
1514bicomi 195 . . . 4
16 bitr3 28655 . . . . 5
1716com12 30 . . . 4
1813, 15, 17e10 28857 . . 3
19 df-3or 938 . . . 4
2019bicomi 195 . . 3
21 bitr 691 . . . 4
2221ex 425 . . 3
2318, 20, 22e10 28857 . 2
2423in1 28724 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wo 359   w3o 936   w3a 937 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-vd1 28723
 Copyright terms: Public domain W3C validator