MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3orim123d Unicode version

Theorem 3orim123d 1260
Description: Deduction joining 3 implications to form implication of disjunctions. (Contributed by NM, 4-Apr-1997.)
Hypotheses
Ref Expression
3anim123d.1  |-  ( ph  ->  ( ps  ->  ch ) )
3anim123d.2  |-  ( ph  ->  ( th  ->  ta ) )
3anim123d.3  |-  ( ph  ->  ( et  ->  ze )
)
Assertion
Ref Expression
3orim123d  |-  ( ph  ->  ( ( ps  \/  th  \/  et )  -> 
( ch  \/  ta  \/  ze ) ) )

Proof of Theorem 3orim123d
StepHypRef Expression
1 3anim123d.1 . . . 4  |-  ( ph  ->  ( ps  ->  ch ) )
2 3anim123d.2 . . . 4  |-  ( ph  ->  ( th  ->  ta ) )
31, 2orim12d 811 . . 3  |-  ( ph  ->  ( ( ps  \/  th )  ->  ( ch  \/  ta ) ) )
4 3anim123d.3 . . 3  |-  ( ph  ->  ( et  ->  ze )
)
53, 4orim12d 811 . 2  |-  ( ph  ->  ( ( ( ps  \/  th )  \/  et )  ->  (
( ch  \/  ta )  \/  ze )
) )
6 df-3or 935 . 2  |-  ( ( ps  \/  th  \/  et )  <->  ( ( ps  \/  th )  \/  et ) )
7 df-3or 935 . 2  |-  ( ( ch  \/  ta  \/  ze )  <->  ( ( ch  \/  ta )  \/ 
ze ) )
85, 6, 73imtr4g 261 1  |-  ( ph  ->  ( ( ps  \/  th  \/  et )  -> 
( ch  \/  ta  \/  ze ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    \/ w3o 933
This theorem is referenced by:  fr3nr  4587  soxp  6244  zorn2lem6  8144  fpwwe2lem12  8279  fpwwe2lem13  8280  sltres  24389  colinearalglem4  24609  colinearxfr  24770
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935
  Copyright terms: Public domain W3C validator