Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3ornot23VD Unicode version

Theorem 3ornot23VD 28939
Description: Virtual deduction proof of 3ornot23 28569. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1::
 2:: 3:1,?: e1_ 28704 4:1,?: e1_ 28704 5:3,4,?: e11 28765 6:2,?: e2 28708 7:5,6,?: e12 28813 8:7: qed:8:
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
3ornot23VD

Proof of Theorem 3ornot23VD
StepHypRef Expression
1 idn1 28641 . . . . . 6
2 simpl 443 . . . . . 6
31, 2e1_ 28704 . . . . 5
4 simpr 447 . . . . . 6
51, 4e1_ 28704 . . . . 5
6 ioran 476 . . . . . 6
76simplbi2 608 . . . . 5
83, 5, 7e11 28765 . . . 4
9 idn2 28690 . . . . 5
10 3orass 937 . . . . . 6
1110biimpi 186 . . . . 5
129, 11e2 28708 . . . 4
13 orel2 372 . . . 4
148, 12, 13e12 28813 . . 3
1514in2 28682 . 2
1615in1 28638 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wo 357   wa 358   w3o 933 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-vd1 28637  df-vd2 28646
 Copyright terms: Public domain W3C validator