MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3orrot Structured version   Unicode version

Theorem 3orrot 943
Description: Rotation law for triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3orrot  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ps  \/  ch  \/  ph ) )

Proof of Theorem 3orrot
StepHypRef Expression
1 orcom 378 . 2  |-  ( (
ph  \/  ( ps  \/  ch ) )  <->  ( ( ps  \/  ch )  \/ 
ph ) )
2 3orass 940 . 2  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ph  \/  ( ps  \/  ch ) ) )
3 df-3or 938 . 2  |-  ( ( ps  \/  ch  \/  ph )  <->  ( ( ps  \/  ch )  \/ 
ph ) )
41, 2, 33bitr4i 270 1  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ps  \/  ch  \/  ph ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    \/ wo 359    \/ w3o 936
This theorem is referenced by:  3mix2  1128  3mix3  1129  eueq3  3111  tprot  3901  wemapso2lem  7521  ssxr  9147  elnnz  10294  elznn  10299  3orel2  25167  dfon2lem5  25416  dfon2lem6  25417  colinearperm3  25999  wl-exeq  26236  dvreasin  26292
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 179  df-or 361  df-3or 938
  Copyright terms: Public domain W3C validator