MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3pos Unicode version

Theorem 3pos 10016
Description: The number 3 is positive. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
3pos  |-  0  <  3

Proof of Theorem 3pos
StepHypRef Expression
1 2re 10001 . . 3  |-  2  e.  RR
2 1re 9023 . . 3  |-  1  e.  RR
3 2pos 10014 . . 3  |-  0  <  2
4 0lt1 9482 . . 3  |-  0  <  1
51, 2, 3, 4addgt0ii 9501 . 2  |-  0  <  ( 2  +  1 )
6 df-3 9991 . 2  |-  3  =  ( 2  +  1 )
75, 6breqtrri 4178 1  |-  0  <  3
Colors of variables: wff set class
Syntax hints:   class class class wbr 4153  (class class class)co 6020   0cc0 8923   1c1 8924    + caddc 8926    < clt 9053   2c2 9981   3c3 9982
This theorem is referenced by:  3ne0  10017  4pos  10018  sqrlem7  11981  sqr9  12006  caurcvgr  12394  ef01bndlem  12712  cos2bnd  12716  sin01gt0  12718  cos01gt0  12719  rpnnen2lem3  12743  rpnnen2lem4  12744  rpnnen2lem9  12749  43prm  13371  tangtx  20280  sincos6thpi  20290  pige3  20292  log2cnv  20651  log2tlbnd  20652  cht3  20823  ppiub  20855  bposlem2  20936  bposlem3  20937  bposlem4  20938  bposlem5  20939  lgsdir2lem1  20974  chto1ub  21037  dchrvmasumiflem1  21062  usgraexvlem  21280  3v3e3cycl1  21479  konigsberg  21557  heiborlem5  26215  heiborlem7  26217  jm2.23  26758  stoweidlem13  27430  stoweidlem26  27443  stoweidlem34  27451  stoweidlem42  27459  stoweidlem59  27476  stoweid  27480  wallispilem4  27485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-po 4444  df-so 4445  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-riota 6485  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-2 9990  df-3 9991
  Copyright terms: Public domain W3C validator