Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3vfriswmgralem Unicode version

Theorem 3vfriswmgralem 27759
Description: Lemma for 3vfriswmgra 27760. (Contributed by Alexander van der Vekens, 6-Oct-2017.)
Assertion
Ref Expression
3vfriswmgralem  |-  ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  ->  ( { A ,  B }  e.  ran  E  ->  E! w  e.  { A ,  B }  { A ,  w }  e.  ran  E ) )
Distinct variable groups:    w, A    w, B    w, C    w, E    w, X    w, Y

Proof of Theorem 3vfriswmgralem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simpr 448 . . . . . . 7  |-  ( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  { A ,  B }  e.  ran  E )
21olcd 383 . . . . . 6  |-  ( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  ( { A ,  A }  e.  ran  E  \/  { A ,  B }  e.  ran  E ) )
3 preq2 3829 . . . . . . . . . 10  |-  ( w  =  A  ->  { A ,  w }  =  { A ,  A }
)
43eleq1d 2455 . . . . . . . . 9  |-  ( w  =  A  ->  ( { A ,  w }  e.  ran  E  <->  { A ,  A }  e.  ran  E ) )
5 preq2 3829 . . . . . . . . . 10  |-  ( w  =  B  ->  { A ,  w }  =  { A ,  B }
)
65eleq1d 2455 . . . . . . . . 9  |-  ( w  =  B  ->  ( { A ,  w }  e.  ran  E  <->  { A ,  B }  e.  ran  E ) )
74, 6rexprg 3803 . . . . . . . 8  |-  ( ( A  e.  X  /\  B  e.  Y )  ->  ( E. w  e. 
{ A ,  B }  { A ,  w }  e.  ran  E  <->  ( { A ,  A }  e.  ran  E  \/  { A ,  B }  e.  ran  E ) ) )
873ad2ant1 978 . . . . . . 7  |-  ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  ->  ( E. w  e.  { A ,  B }  { A ,  w }  e.  ran  E  <-> 
( { A ,  A }  e.  ran  E  \/  { A ,  B }  e.  ran  E ) ) )
98adantr 452 . . . . . 6  |-  ( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  ( E. w  e.  { A ,  B }  { A ,  w }  e.  ran  E  <-> 
( { A ,  A }  e.  ran  E  \/  { A ,  B }  e.  ran  E ) ) )
102, 9mpbird 224 . . . . 5  |-  ( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  E. w  e.  { A ,  B }  { A ,  w }  e.  ran  E )
11 df-rex 2657 . . . . 5  |-  ( E. w  e.  { A ,  B }  { A ,  w }  e.  ran  E  <->  E. w ( w  e. 
{ A ,  B }  /\  { A ,  w }  e.  ran  E ) )
1210, 11sylib 189 . . . 4  |-  ( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  E. w
( w  e.  { A ,  B }  /\  { A ,  w }  e.  ran  E ) )
13 vex 2904 . . . . . . . . 9  |-  w  e. 
_V
1413elpr 3777 . . . . . . . 8  |-  ( w  e.  { A ,  B }  <->  ( w  =  A  \/  w  =  B ) )
15 vex 2904 . . . . . . . . . . . 12  |-  y  e. 
_V
1615elpr 3777 . . . . . . . . . . 11  |-  ( y  e.  { A ,  B }  <->  ( y  =  A  \/  y  =  B ) )
17 eqidd 2390 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  A )
1817a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( { A ,  A }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  A ) )
1918a1ii 25 . . . . . . . . . . . . . . . 16  |-  ( y  =  A  ->  ( { A ,  A }  e.  ran  E  ->  ( { A ,  A }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  A ) ) ) )
20 preq2 3829 . . . . . . . . . . . . . . . . 17  |-  ( y  =  A  ->  { A ,  y }  =  { A ,  A }
)
2120eleq1d 2455 . . . . . . . . . . . . . . . 16  |-  ( y  =  A  ->  ( { A ,  y }  e.  ran  E  <->  { A ,  A }  e.  ran  E ) )
22 eqeq2 2398 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  A  ->  ( A  =  y  <->  A  =  A ) )
2322imbi2d 308 . . . . . . . . . . . . . . . . 17  |-  ( y  =  A  ->  (
( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  y )  <->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  A ) ) )
2423imbi2d 308 . . . . . . . . . . . . . . . 16  |-  ( y  =  A  ->  (
( { A ,  A }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  y ) )  <->  ( { A ,  A }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  A ) ) ) )
2519, 21, 243imtr4d 260 . . . . . . . . . . . . . . 15  |-  ( y  =  A  ->  ( { A ,  y }  e.  ran  E  -> 
( { A ,  A }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  y ) ) ) )
26 usgraedgrn 21269 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( { A ,  B ,  C } USGrph  E  /\  { A ,  A }  e.  ran  E )  ->  A  =/=  A )
27 df-ne 2554 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A  =/=  A  <->  -.  A  =  A )
28 eqid 2389 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  A  =  A
2928pm2.24i 138 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( -.  A  =  A  ->  A  =  B )
3027, 29sylbi 188 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A  =/=  A  ->  A  =  B )
3126, 30syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( { A ,  B ,  C } USGrph  E  /\  { A ,  A }  e.  ran  E )  ->  A  =  B )
3231ex 424 . . . . . . . . . . . . . . . . . . . 20  |-  ( { A ,  B ,  C } USGrph  E  ->  ( { A ,  A }  e.  ran  E  ->  A  =  B ) )
33323ad2ant3 980 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  ->  ( { A ,  A }  e.  ran  E  ->  A  =  B ) )
3433adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  ( { A ,  A }  e.  ran  E  ->  A  =  B ) )
3534com12 29 . . . . . . . . . . . . . . . . 17  |-  ( { A ,  A }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  B ) )
3635a1ii 25 . . . . . . . . . . . . . . . 16  |-  ( y  =  B  ->  ( { A ,  B }  e.  ran  E  ->  ( { A ,  A }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  B ) ) ) )
37 preq2 3829 . . . . . . . . . . . . . . . . 17  |-  ( y  =  B  ->  { A ,  y }  =  { A ,  B }
)
3837eleq1d 2455 . . . . . . . . . . . . . . . 16  |-  ( y  =  B  ->  ( { A ,  y }  e.  ran  E  <->  { A ,  B }  e.  ran  E ) )
39 eqeq2 2398 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  B  ->  ( A  =  y  <->  A  =  B ) )
4039imbi2d 308 . . . . . . . . . . . . . . . . 17  |-  ( y  =  B  ->  (
( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  y )  <->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  B ) ) )
4140imbi2d 308 . . . . . . . . . . . . . . . 16  |-  ( y  =  B  ->  (
( { A ,  A }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  y ) )  <->  ( { A ,  A }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  B ) ) ) )
4236, 38, 413imtr4d 260 . . . . . . . . . . . . . . 15  |-  ( y  =  B  ->  ( { A ,  y }  e.  ran  E  -> 
( { A ,  A }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  y ) ) ) )
4325, 42jaoi 369 . . . . . . . . . . . . . 14  |-  ( ( y  =  A  \/  y  =  B )  ->  ( { A , 
y }  e.  ran  E  ->  ( { A ,  A }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  y ) ) ) )
44 eqeq1 2395 . . . . . . . . . . . . . . . . 17  |-  ( w  =  A  ->  (
w  =  y  <->  A  =  y ) )
4544imbi2d 308 . . . . . . . . . . . . . . . 16  |-  ( w  =  A  ->  (
( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y )  <->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  y ) ) )
464, 45imbi12d 312 . . . . . . . . . . . . . . 15  |-  ( w  =  A  ->  (
( { A ,  w }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y ) )  <->  ( { A ,  A }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  y ) ) ) )
4746imbi2d 308 . . . . . . . . . . . . . 14  |-  ( w  =  A  ->  (
( { A , 
y }  e.  ran  E  ->  ( { A ,  w }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y ) ) )  <-> 
( { A , 
y }  e.  ran  E  ->  ( { A ,  A }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A  =  y ) ) ) ) )
4843, 47syl5ibr 213 . . . . . . . . . . . . 13  |-  ( w  =  A  ->  (
( y  =  A  \/  y  =  B )  ->  ( { A ,  y }  e.  ran  E  ->  ( { A ,  w }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y ) ) ) ) )
4928pm2.24i 138 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( -.  A  =  A  ->  B  =  A )
5027, 49sylbi 188 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A  =/=  A  ->  B  =  A )
5126, 50syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( { A ,  B ,  C } USGrph  E  /\  { A ,  A }  e.  ran  E )  ->  B  =  A )
5251ex 424 . . . . . . . . . . . . . . . . . . . . 21  |-  ( { A ,  B ,  C } USGrph  E  ->  ( { A ,  A }  e.  ran  E  ->  B  =  A ) )
53523ad2ant3 980 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  ->  ( { A ,  A }  e.  ran  E  ->  B  =  A ) )
5453adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  ( { A ,  A }  e.  ran  E  ->  B  =  A ) )
5554com12 29 . . . . . . . . . . . . . . . . . 18  |-  ( { A ,  A }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  A ) )
5655a1d 23 . . . . . . . . . . . . . . . . 17  |-  ( { A ,  A }  e.  ran  E  ->  ( { A ,  B }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  A ) ) )
5756a1i 11 . . . . . . . . . . . . . . . 16  |-  ( y  =  A  ->  ( { A ,  A }  e.  ran  E  ->  ( { A ,  B }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  A ) ) ) )
58 eqeq2 2398 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  A  ->  ( B  =  y  <->  B  =  A ) )
5958imbi2d 308 . . . . . . . . . . . . . . . . 17  |-  ( y  =  A  ->  (
( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  y )  <->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  A ) ) )
6059imbi2d 308 . . . . . . . . . . . . . . . 16  |-  ( y  =  A  ->  (
( { A ,  B }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  y ) )  <->  ( { A ,  B }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  A ) ) ) )
6157, 21, 603imtr4d 260 . . . . . . . . . . . . . . 15  |-  ( y  =  A  ->  ( { A ,  y }  e.  ran  E  -> 
( { A ,  B }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  y ) ) ) )
62 eqidd 2390 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  B )
6362a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( { A ,  B }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  B ) )
6463a1ii 25 . . . . . . . . . . . . . . . 16  |-  ( y  =  B  ->  ( { A ,  B }  e.  ran  E  ->  ( { A ,  B }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  B ) ) ) )
65 eqeq2 2398 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  B  ->  ( B  =  y  <->  B  =  B ) )
6665imbi2d 308 . . . . . . . . . . . . . . . . 17  |-  ( y  =  B  ->  (
( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  y )  <->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  B ) ) )
6766imbi2d 308 . . . . . . . . . . . . . . . 16  |-  ( y  =  B  ->  (
( { A ,  B }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  y ) )  <->  ( { A ,  B }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  B ) ) ) )
6864, 38, 673imtr4d 260 . . . . . . . . . . . . . . 15  |-  ( y  =  B  ->  ( { A ,  y }  e.  ran  E  -> 
( { A ,  B }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  y ) ) ) )
6961, 68jaoi 369 . . . . . . . . . . . . . 14  |-  ( ( y  =  A  \/  y  =  B )  ->  ( { A , 
y }  e.  ran  E  ->  ( { A ,  B }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  y ) ) ) )
70 eqeq1 2395 . . . . . . . . . . . . . . . . 17  |-  ( w  =  B  ->  (
w  =  y  <->  B  =  y ) )
7170imbi2d 308 . . . . . . . . . . . . . . . 16  |-  ( w  =  B  ->  (
( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y )  <->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  y ) ) )
726, 71imbi12d 312 . . . . . . . . . . . . . . 15  |-  ( w  =  B  ->  (
( { A ,  w }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y ) )  <->  ( { A ,  B }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  y ) ) ) )
7372imbi2d 308 . . . . . . . . . . . . . 14  |-  ( w  =  B  ->  (
( { A , 
y }  e.  ran  E  ->  ( { A ,  w }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y ) ) )  <-> 
( { A , 
y }  e.  ran  E  ->  ( { A ,  B }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  B  =  y ) ) ) ) )
7469, 73syl5ibr 213 . . . . . . . . . . . . 13  |-  ( w  =  B  ->  (
( y  =  A  \/  y  =  B )  ->  ( { A ,  y }  e.  ran  E  ->  ( { A ,  w }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y ) ) ) ) )
7548, 74jaoi 369 . . . . . . . . . . . 12  |-  ( ( w  =  A  \/  w  =  B )  ->  ( ( y  =  A  \/  y  =  B )  ->  ( { A ,  y }  e.  ran  E  -> 
( { A ,  w }  e.  ran  E  ->  ( ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y ) ) ) ) )
7675com3l 77 . . . . . . . . . . 11  |-  ( ( y  =  A  \/  y  =  B )  ->  ( { A , 
y }  e.  ran  E  ->  ( ( w  =  A  \/  w  =  B )  ->  ( { A ,  w }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y ) ) ) ) )
7716, 76sylbi 188 . . . . . . . . . 10  |-  ( y  e.  { A ,  B }  ->  ( { A ,  y }  e.  ran  E  -> 
( ( w  =  A  \/  w  =  B )  ->  ( { A ,  w }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y ) ) ) ) )
7877imp 419 . . . . . . . . 9  |-  ( ( y  e.  { A ,  B }  /\  { A ,  y }  e.  ran  E )  -> 
( ( w  =  A  \/  w  =  B )  ->  ( { A ,  w }  e.  ran  E  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y ) ) ) )
7978com3l 77 . . . . . . . 8  |-  ( ( w  =  A  \/  w  =  B )  ->  ( { A ,  w }  e.  ran  E  ->  ( ( y  e.  { A ,  B }  /\  { A ,  y }  e.  ran  E )  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y ) ) ) )
8014, 79sylbi 188 . . . . . . 7  |-  ( w  e.  { A ,  B }  ->  ( { A ,  w }  e.  ran  E  ->  (
( y  e.  { A ,  B }  /\  { A ,  y }  e.  ran  E
)  ->  ( (
( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y ) ) ) )
8180imp31 422 . . . . . 6  |-  ( ( ( w  e.  { A ,  B }  /\  { A ,  w }  e.  ran  E )  /\  ( y  e. 
{ A ,  B }  /\  { A , 
y }  e.  ran  E ) )  ->  (
( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  w  =  y ) )
8281com12 29 . . . . 5  |-  ( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  ( (
( w  e.  { A ,  B }  /\  { A ,  w }  e.  ran  E )  /\  ( y  e. 
{ A ,  B }  /\  { A , 
y }  e.  ran  E ) )  ->  w  =  y ) )
8382alrimivv 1639 . . . 4  |-  ( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  A. w A. y ( ( ( w  e.  { A ,  B }  /\  { A ,  w }  e.  ran  E )  /\  ( y  e.  { A ,  B }  /\  { A ,  y }  e.  ran  E
) )  ->  w  =  y ) )
84 eleq1 2449 . . . . . 6  |-  ( w  =  y  ->  (
w  e.  { A ,  B }  <->  y  e.  { A ,  B }
) )
85 preq2 3829 . . . . . . 7  |-  ( w  =  y  ->  { A ,  w }  =  { A ,  y }
)
8685eleq1d 2455 . . . . . 6  |-  ( w  =  y  ->  ( { A ,  w }  e.  ran  E  <->  { A ,  y }  e.  ran  E ) )
8784, 86anbi12d 692 . . . . 5  |-  ( w  =  y  ->  (
( w  e.  { A ,  B }  /\  { A ,  w }  e.  ran  E )  <-> 
( y  e.  { A ,  B }  /\  { A ,  y }  e.  ran  E
) ) )
8887eu4 2279 . . . 4  |-  ( E! w ( w  e. 
{ A ,  B }  /\  { A ,  w }  e.  ran  E )  <->  ( E. w
( w  e.  { A ,  B }  /\  { A ,  w }  e.  ran  E )  /\  A. w A. y ( ( ( w  e.  { A ,  B }  /\  { A ,  w }  e.  ran  E )  /\  ( y  e.  { A ,  B }  /\  { A ,  y }  e.  ran  E
) )  ->  w  =  y ) ) )
8912, 83, 88sylanbrc 646 . . 3  |-  ( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  E! w
( w  e.  { A ,  B }  /\  { A ,  w }  e.  ran  E ) )
90 df-reu 2658 . . 3  |-  ( E! w  e.  { A ,  B }  { A ,  w }  e.  ran  E  <-> 
E! w ( w  e.  { A ,  B }  /\  { A ,  w }  e.  ran  E ) )
9189, 90sylibr 204 . 2  |-  ( ( ( ( A  e.  X  /\  B  e.  Y )  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  /\  { A ,  B }  e.  ran  E )  ->  E! w  e.  { A ,  B }  { A ,  w }  e.  ran  E )
9291ex 424 1  |-  ( ( ( A  e.  X  /\  B  e.  Y
)  /\  A  =/=  B  /\  { A ,  B ,  C } USGrph  E )  ->  ( { A ,  B }  e.  ran  E  ->  E! w  e.  { A ,  B }  { A ,  w }  e.  ran  E ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936   A.wal 1546   E.wex 1547    = wceq 1649    e. wcel 1717   E!weu 2240    =/= wne 2552   E.wrex 2652   E!wreu 2653   {cpr 3760   {ctp 3761   class class class wbr 4155   ran crn 4821   USGrph cusg 21234
This theorem is referenced by:  3vfriswmgra  27760
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-oadd 6666  df-er 6843  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-card 7761  df-cda 7983  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-nn 9935  df-2 9992  df-n0 10156  df-z 10217  df-uz 10423  df-fz 10978  df-hash 11548  df-usgra 21236
  Copyright terms: Public domain W3C validator