Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4at2 Unicode version

Theorem 4at2 30425
Description: Four atoms determine a lattice volume uniquely. (Contributed by NM, 11-Jul-2012.)
Hypotheses
Ref Expression
4at.l  |-  .<_  =  ( le `  K )
4at.j  |-  .\/  =  ( join `  K )
4at.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
4at2  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( ( ( P 
.\/  Q )  .\/  R )  .\/  S ) 
.<_  ( ( ( T 
.\/  U )  .\/  V )  .\/  W )  <-> 
( ( ( P 
.\/  Q )  .\/  R )  .\/  S )  =  ( ( ( T  .\/  U ) 
.\/  V )  .\/  W ) ) )

Proof of Theorem 4at2
StepHypRef Expression
1 4at.l . . 3  |-  .<_  =  ( le `  K )
2 4at.j . . 3  |-  .\/  =  ( join `  K )
3 4at.a . . 3  |-  A  =  ( Atoms `  K )
41, 2, 34at 30424 . 2  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( ( P  .\/  Q )  .\/  ( R 
.\/  S ) ) 
.<_  ( ( T  .\/  U )  .\/  ( V 
.\/  W ) )  <-> 
( ( P  .\/  Q )  .\/  ( R 
.\/  S ) )  =  ( ( T 
.\/  U )  .\/  ( V  .\/  W ) ) ) )
5 simp11 985 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A ) )  ->  K  e.  HL )
6 hllat 30175 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
75, 6syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A ) )  ->  K  e.  Lat )
8 eqid 2296 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
98, 2, 3hlatjcl 30178 . . . . . 6  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
1093ad2ant1 976 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A ) )  -> 
( P  .\/  Q
)  e.  ( Base `  K ) )
11 simp21 988 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A ) )  ->  R  e.  A )
128, 3atbase 30101 . . . . . 6  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
1311, 12syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A ) )  ->  R  e.  ( Base `  K ) )
14 simp22 989 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A ) )  ->  S  e.  A )
158, 3atbase 30101 . . . . . 6  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
1614, 15syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A ) )  ->  S  e.  ( Base `  K ) )
178, 2latjass 14217 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( P  .\/  Q )  e.  ( Base `  K )  /\  R  e.  ( Base `  K
)  /\  S  e.  ( Base `  K )
) )  ->  (
( ( P  .\/  Q )  .\/  R ) 
.\/  S )  =  ( ( P  .\/  Q )  .\/  ( R 
.\/  S ) ) )
187, 10, 13, 16, 17syl13anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A ) )  -> 
( ( ( P 
.\/  Q )  .\/  R )  .\/  S )  =  ( ( P 
.\/  Q )  .\/  ( R  .\/  S ) ) )
19 simp23 990 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A ) )  ->  T  e.  A )
20 simp31 991 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A ) )  ->  U  e.  A )
218, 2, 3hlatjcl 30178 . . . . . 6  |-  ( ( K  e.  HL  /\  T  e.  A  /\  U  e.  A )  ->  ( T  .\/  U
)  e.  ( Base `  K ) )
225, 19, 20, 21syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A ) )  -> 
( T  .\/  U
)  e.  ( Base `  K ) )
23 simp32 992 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A ) )  ->  V  e.  A )
248, 3atbase 30101 . . . . . 6  |-  ( V  e.  A  ->  V  e.  ( Base `  K
) )
2523, 24syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A ) )  ->  V  e.  ( Base `  K ) )
26 simp33 993 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A ) )  ->  W  e.  A )
278, 3atbase 30101 . . . . . 6  |-  ( W  e.  A  ->  W  e.  ( Base `  K
) )
2826, 27syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A ) )  ->  W  e.  ( Base `  K ) )
298, 2latjass 14217 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( T  .\/  U )  e.  ( Base `  K )  /\  V  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
) )  ->  (
( ( T  .\/  U )  .\/  V ) 
.\/  W )  =  ( ( T  .\/  U )  .\/  ( V 
.\/  W ) ) )
307, 22, 25, 28, 29syl13anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A ) )  -> 
( ( ( T 
.\/  U )  .\/  V )  .\/  W )  =  ( ( T 
.\/  U )  .\/  ( V  .\/  W ) ) )
3118, 30breq12d 4052 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A ) )  -> 
( ( ( ( P  .\/  Q ) 
.\/  R )  .\/  S )  .<_  ( (
( T  .\/  U
)  .\/  V )  .\/  W )  <->  ( ( P  .\/  Q )  .\/  ( R  .\/  S ) )  .<_  ( ( T  .\/  U )  .\/  ( V  .\/  W ) ) ) )
3231adantr 451 . 2  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( ( ( P 
.\/  Q )  .\/  R )  .\/  S ) 
.<_  ( ( ( T 
.\/  U )  .\/  V )  .\/  W )  <-> 
( ( P  .\/  Q )  .\/  ( R 
.\/  S ) ) 
.<_  ( ( T  .\/  U )  .\/  ( V 
.\/  W ) ) ) )
3318, 30eqeq12d 2310 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A ) )  -> 
( ( ( ( P  .\/  Q ) 
.\/  R )  .\/  S )  =  ( ( ( T  .\/  U
)  .\/  V )  .\/  W )  <->  ( ( P  .\/  Q )  .\/  ( R  .\/  S ) )  =  ( ( T  .\/  U ) 
.\/  ( V  .\/  W ) ) ) )
3433adantr 451 . 2  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( ( ( P 
.\/  Q )  .\/  R )  .\/  S )  =  ( ( ( T  .\/  U ) 
.\/  V )  .\/  W )  <->  ( ( P 
.\/  Q )  .\/  ( R  .\/  S ) )  =  ( ( T  .\/  U ) 
.\/  ( V  .\/  W ) ) ) )
354, 32, 343bitr4d 276 1  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( ( ( P 
.\/  Q )  .\/  R )  .\/  S ) 
.<_  ( ( ( T 
.\/  U )  .\/  V )  .\/  W )  <-> 
( ( ( P 
.\/  Q )  .\/  R )  .\/  S )  =  ( ( ( T  .\/  U ) 
.\/  V )  .\/  W ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   joincjn 14094   Latclat 14167   Atomscatm 30075   HLchlt 30162
This theorem is referenced by:  lplncvrlvol2  30426
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-llines 30309  df-lplanes 30310  df-lvols 30311
  Copyright terms: Public domain W3C validator