Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atex Unicode version

Theorem 4atex 30324
Description: Whenever there are at least 4 atoms under  P  .\/  Q (specifically,  P,  Q,  r, and  ( P  .\/  Q
)  ./\  W), there are also at least 4 atoms under  P  .\/  S. This proves the statement in Lemma E of [Crawley] p. 114, last line, "...p  \/ q/0 and hence p  \/ s/0 contains at least four atoms..." Note that by cvlsupr2 29592, our  ( P  .\/  r )  =  ( Q  .\/  r ) is a shorter way to express  r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ). (Contributed by NM, 27-May-2013.)
Hypotheses
Ref Expression
4that.l  |-  .<_  =  ( le `  K )
4that.j  |-  .\/  =  ( join `  K )
4that.a  |-  A  =  ( Atoms `  K )
4that.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
4atex  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )
Distinct variable groups:    z, r, A    H, r    .\/ , r,
z    K, r, z    .<_ , r, z    P, r, z    Q, r, z    S, r, z    W, r, z
Allowed substitution hint:    H( z)

Proof of Theorem 4atex
StepHypRef Expression
1 simp21l 1073 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  P  e.  A
)
21ad2antrr 706 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  /\  S  .<_  ( P  .\/  Q ) )  /\  S  =  P )  ->  P  e.  A )
3 simp21r 1074 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  -.  P  .<_  W )
43ad2antrr 706 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  /\  S  .<_  ( P  .\/  Q ) )  /\  S  =  P )  ->  -.  P  .<_  W )
5 oveq1 5988 . . . . . 6  |-  ( P  =  S  ->  ( P  .\/  P )  =  ( S  .\/  P
) )
65eqcoms 2369 . . . . 5  |-  ( S  =  P  ->  ( P  .\/  P )  =  ( S  .\/  P
) )
76adantl 452 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  /\  S  .<_  ( P  .\/  Q ) )  /\  S  =  P )  ->  ( P  .\/  P )  =  ( S  .\/  P
) )
8 breq1 4128 . . . . . . 7  |-  ( z  =  P  ->  (
z  .<_  W  <->  P  .<_  W ) )
98notbid 285 . . . . . 6  |-  ( z  =  P  ->  ( -.  z  .<_  W  <->  -.  P  .<_  W ) )
10 oveq2 5989 . . . . . . 7  |-  ( z  =  P  ->  ( P  .\/  z )  =  ( P  .\/  P
) )
11 oveq2 5989 . . . . . . 7  |-  ( z  =  P  ->  ( S  .\/  z )  =  ( S  .\/  P
) )
1210, 11eqeq12d 2380 . . . . . 6  |-  ( z  =  P  ->  (
( P  .\/  z
)  =  ( S 
.\/  z )  <->  ( P  .\/  P )  =  ( S  .\/  P ) ) )
139, 12anbi12d 691 . . . . 5  |-  ( z  =  P  ->  (
( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) )  <->  ( -.  P  .<_  W  /\  ( P 
.\/  P )  =  ( S  .\/  P
) ) ) )
1413rspcev 2969 . . . 4  |-  ( ( P  e.  A  /\  ( -.  P  .<_  W  /\  ( P  .\/  P )  =  ( S 
.\/  P ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z
) ) )
152, 4, 7, 14syl12anc 1181 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  /\  S  .<_  ( P  .\/  Q ) )  /\  S  =  P )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z
) ) )
16 simpl3r 1012 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  /\  S  .<_  ( P  .\/  Q ) )  ->  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )
1716ad2antrr 706 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =  Q )  ->  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )
18 oveq1 5988 . . . . . . . . . 10  |-  ( S  =  Q  ->  ( S  .\/  z )  =  ( Q  .\/  z
) )
1918eqeq2d 2377 . . . . . . . . 9  |-  ( S  =  Q  ->  (
( P  .\/  z
)  =  ( S 
.\/  z )  <->  ( P  .\/  z )  =  ( Q  .\/  z ) ) )
2019anbi2d 684 . . . . . . . 8  |-  ( S  =  Q  ->  (
( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) )  <->  ( -.  z  .<_  W  /\  ( P 
.\/  z )  =  ( Q  .\/  z
) ) ) )
2120rexbidv 2649 . . . . . . 7  |-  ( S  =  Q  ->  ( E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) )  <->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( Q  .\/  z ) ) ) )
22 breq1 4128 . . . . . . . . . 10  |-  ( r  =  z  ->  (
r  .<_  W  <->  z  .<_  W ) )
2322notbid 285 . . . . . . . . 9  |-  ( r  =  z  ->  ( -.  r  .<_  W  <->  -.  z  .<_  W ) )
24 oveq2 5989 . . . . . . . . . 10  |-  ( r  =  z  ->  ( P  .\/  r )  =  ( P  .\/  z
) )
25 oveq2 5989 . . . . . . . . . 10  |-  ( r  =  z  ->  ( Q  .\/  r )  =  ( Q  .\/  z
) )
2624, 25eqeq12d 2380 . . . . . . . . 9  |-  ( r  =  z  ->  (
( P  .\/  r
)  =  ( Q 
.\/  r )  <->  ( P  .\/  z )  =  ( Q  .\/  z ) ) )
2723, 26anbi12d 691 . . . . . . . 8  |-  ( r  =  z  ->  (
( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) )  <->  ( -.  z  .<_  W  /\  ( P 
.\/  z )  =  ( Q  .\/  z
) ) ) )
2827cbvrexv 2850 . . . . . . 7  |-  ( E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) )  <->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( Q  .\/  z
) ) )
2921, 28syl6rbbr 255 . . . . . 6  |-  ( S  =  Q  ->  ( E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) )  <->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )
3029adantl 452 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =  Q )  ->  ( E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) )  <->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )
3117, 30mpbid 201 . . . 4  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =  Q )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z
) ) )
32 simp22l 1075 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  Q  e.  A
)
3332ad3antrrr 710 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  Q  e.  A )
34 simp22r 1076 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  -.  Q  .<_  W )
3534ad3antrrr 710 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  -.  Q  .<_  W )
36 simp3l 984 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  P  =/=  Q
)
3736necomd 2612 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  Q  =/=  P
)
3837ad3antrrr 710 . . . . . 6  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  Q  =/=  P )
39 simpr 447 . . . . . . 7  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  S  =/=  Q )
4039necomd 2612 . . . . . 6  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  Q  =/=  S )
41 simpllr 735 . . . . . . 7  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  S  .<_  ( P  .\/  Q ) )
42 simp1l 980 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  K  e.  HL )
43 hlcvl 29608 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  CvLat )
4442, 43syl 15 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  K  e.  CvLat )
4544ad3antrrr 710 . . . . . . . 8  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  K  e.  CvLat
)
46 simp23 991 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  S  e.  A
)
4746ad3antrrr 710 . . . . . . . 8  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  S  e.  A )
481ad3antrrr 710 . . . . . . . 8  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  P  e.  A )
49 simplr 731 . . . . . . . 8  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  S  =/=  P )
50 4that.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
51 4that.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
52 4that.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
5350, 51, 52cvlatexch1 29585 . . . . . . . 8  |-  ( ( K  e.  CvLat  /\  ( S  e.  A  /\  Q  e.  A  /\  P  e.  A )  /\  S  =/=  P
)  ->  ( S  .<_  ( P  .\/  Q
)  ->  Q  .<_  ( P  .\/  S ) ) )
5445, 47, 33, 48, 49, 53syl131anc 1196 . . . . . . 7  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  ( S  .<_  ( P  .\/  Q
)  ->  Q  .<_  ( P  .\/  S ) ) )
5541, 54mpd 14 . . . . . 6  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  Q  .<_  ( P  .\/  S ) )
5649necomd 2612 . . . . . . 7  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  P  =/=  S )
5752, 50, 51cvlsupr2 29592 . . . . . . 7  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  S  e.  A  /\  Q  e.  A )  /\  P  =/=  S
)  ->  ( ( P  .\/  Q )  =  ( S  .\/  Q
)  <->  ( Q  =/= 
P  /\  Q  =/=  S  /\  Q  .<_  ( P 
.\/  S ) ) ) )
5845, 48, 47, 33, 56, 57syl131anc 1196 . . . . . 6  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  ( ( P  .\/  Q )  =  ( S  .\/  Q
)  <->  ( Q  =/= 
P  /\  Q  =/=  S  /\  Q  .<_  ( P 
.\/  S ) ) ) )
5938, 40, 55, 58mpbir3and 1136 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  ( P  .\/  Q )  =  ( S  .\/  Q ) )
60 breq1 4128 . . . . . . . 8  |-  ( z  =  Q  ->  (
z  .<_  W  <->  Q  .<_  W ) )
6160notbid 285 . . . . . . 7  |-  ( z  =  Q  ->  ( -.  z  .<_  W  <->  -.  Q  .<_  W ) )
62 oveq2 5989 . . . . . . . 8  |-  ( z  =  Q  ->  ( P  .\/  z )  =  ( P  .\/  Q
) )
63 oveq2 5989 . . . . . . . 8  |-  ( z  =  Q  ->  ( S  .\/  z )  =  ( S  .\/  Q
) )
6462, 63eqeq12d 2380 . . . . . . 7  |-  ( z  =  Q  ->  (
( P  .\/  z
)  =  ( S 
.\/  z )  <->  ( P  .\/  Q )  =  ( S  .\/  Q ) ) )
6561, 64anbi12d 691 . . . . . 6  |-  ( z  =  Q  ->  (
( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) )  <->  ( -.  Q  .<_  W  /\  ( P 
.\/  Q )  =  ( S  .\/  Q
) ) ) )
6665rspcev 2969 . . . . 5  |-  ( ( Q  e.  A  /\  ( -.  Q  .<_  W  /\  ( P  .\/  Q )  =  ( S 
.\/  Q ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z
) ) )
6733, 35, 59, 66syl12anc 1181 . . . 4  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  /\  S  .<_  ( P 
.\/  Q ) )  /\  S  =/=  P
)  /\  S  =/=  Q )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z
) ) )
6831, 67pm2.61dane 2607 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  /\  S  .<_  ( P  .\/  Q ) )  /\  S  =/= 
P )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z
) ) )
6915, 68pm2.61dane 2607 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  /\  S  .<_  ( P  .\/  Q ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z
) ) )
70 simpl1 959 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
71 simpl2 960 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )
72 simpl3l 1011 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  P  =/=  Q )
73 simpr 447 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  -.  S  .<_  ( P  .\/  Q ) )
74 simpl3r 1012 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )
75 4that.h . . . 4  |-  H  =  ( LHyp `  K
)
7650, 51, 52, 754atexlem7 30323 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )
7770, 71, 72, 73, 74, 76syl113anc 1195 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z
) ) )
7869, 77pm2.61dan 766 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715    =/= wne 2529   E.wrex 2629   class class class wbr 4125   ` cfv 5358  (class class class)co 5981   lecple 13423   joincjn 14288   Atomscatm 29512   CvLatclc 29514   HLchlt 29599   LHypclh 30232
This theorem is referenced by:  4atex2  30325
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-undef 6440  df-riota 6446  df-poset 14290  df-plt 14302  df-lub 14318  df-glb 14319  df-join 14320  df-meet 14321  df-p0 14355  df-p1 14356  df-lat 14362  df-clat 14424  df-oposet 29425  df-ol 29427  df-oml 29428  df-covers 29515  df-ats 29516  df-atl 29547  df-cvlat 29571  df-hlat 29600  df-llines 29746  df-lplanes 29747  df-lhyp 30236
  Copyright terms: Public domain W3C validator