Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlem7 Structured version   Unicode version

Theorem 4atexlem7 30946
Description: Whenever there are at least 4 atoms under  P  .\/  Q (specifically,  P,  Q,  r, and  ( P  .\/  Q
)  ./\  W), there are also at least 4 atoms under  P  .\/  S. This proves the statement in Lemma E of [Crawley] p. 114, last line, "...p  \/ q/0 and hence p  \/ s/0 contains at least four atoms..." Note that by cvlsupr2 30215, our  ( P  .\/  r )  =  ( Q  .\/  r ) is a shorter way to express  r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ). With a longer proof, the condition  -.  S  .<_  ( P  .\/  Q ) could be eliminated (see 4atex 30947), although for some purposes this more restricted lemma may be adequate. (Contributed by NM, 25-Nov-2012.)
Hypotheses
Ref Expression
4that.l  |-  .<_  =  ( le `  K )
4that.j  |-  .\/  =  ( join `  K )
4that.a  |-  A  =  ( Atoms `  K )
4that.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
4atexlem7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )
Distinct variable groups:    z, r, A    H, r    .\/ , r,
z    K, r, z    .<_ , r, z    P, r, z    Q, r, z    S, r, z    W, r, z
Allowed substitution hint:    H( z)

Proof of Theorem 4atexlem7
StepHypRef Expression
1 simp11l 1069 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp1r1 1054 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
323ad2ant1 979 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
4 simp1r2 1055 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
543ad2ant1 979 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
6 simp2 959 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  r  e.  A
)
7 simp3l 986 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  -.  r  .<_  W )
86, 7jca 520 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  ( r  e.  A  /\  -.  r  .<_  W ) )
9 simp1r3 1056 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  ->  S  e.  A )
1093ad2ant1 979 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  S  e.  A
)
11 simp3r 987 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  ( P  .\/  r )  =  ( Q  .\/  r ) )
12 simp12 989 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  P  =/=  Q
)
13 simp13 990 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  -.  S  .<_  ( P  .\/  Q ) )
14 4that.l . . . . . . 7  |-  .<_  =  ( le `  K )
15 4that.j . . . . . . 7  |-  .\/  =  ( join `  K )
16 eqid 2438 . . . . . . 7  |-  ( meet `  K )  =  (
meet `  K )
17 4that.a . . . . . . 7  |-  A  =  ( Atoms `  K )
18 4that.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
1914, 15, 16, 17, 184atexlemex6 30945 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( r  e.  A  /\  -.  r  .<_  W )  /\  S  e.  A )  /\  (
( P  .\/  r
)  =  ( Q 
.\/  r )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )
201, 3, 5, 8, 10, 11, 12, 13, 19syl323anc 1215 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )
2120rexlimdv3a 2834 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  ->  ( E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z
) ) ) )
22213exp 1153 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
) )  ->  ( P  =/=  Q  ->  ( -.  S  .<_  ( P 
.\/  Q )  -> 
( E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z
) ) ) ) ) )
23223impd 1168 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
) )  ->  (
( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )
24233impia 1151 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   E.wrex 2708   class class class wbr 4215   ` cfv 5457  (class class class)co 6084   lecple 13541   joincjn 14406   meetcmee 14407   Atomscatm 30135   HLchlt 30222   LHypclh 30855
This theorem is referenced by:  4atex  30947  cdleme21i  31206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-undef 6546  df-riota 6552  df-poset 14408  df-plt 14420  df-lub 14436  df-glb 14437  df-join 14438  df-meet 14439  df-p0 14473  df-p1 14474  df-lat 14480  df-clat 14542  df-oposet 30048  df-ol 30050  df-oml 30051  df-covers 30138  df-ats 30139  df-atl 30170  df-cvlat 30194  df-hlat 30223  df-llines 30369  df-lplanes 30370  df-lhyp 30859
  Copyright terms: Public domain W3C validator