Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlem7 Unicode version

Theorem 4atexlem7 30264
Description: Whenever there are at least 4 atoms under  P  .\/  Q (specifically,  P,  Q,  r, and  ( P  .\/  Q
)  ./\  W), there are also at least 4 atoms under  P  .\/  S. This proves the statement in Lemma E of [Crawley] p. 114, last line, "...p  \/ q/0 and hence p  \/ s/0 contains at least four atoms..." Note that by cvlsupr2 29533, our  ( P  .\/  r )  =  ( Q  .\/  r ) is a shorter way to express  r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ). With a longer proof, the condition  -.  S  .<_  ( P  .\/  Q ) could be eliminated (see 4atex 30265), although for some purposes this more restricted lemma may be adequate. (Contributed by NM, 25-Nov-2012.)
Hypotheses
Ref Expression
4that.l  |-  .<_  =  ( le `  K )
4that.j  |-  .\/  =  ( join `  K )
4that.a  |-  A  =  ( Atoms `  K )
4that.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
4atexlem7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )
Distinct variable groups:    z, r, A    H, r    .\/ , r,
z    K, r, z    .<_ , r, z    P, r, z    Q, r, z    S, r, z    W, r, z
Allowed substitution hint:    H( z)

Proof of Theorem 4atexlem7
StepHypRef Expression
1 simp11l 1066 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp1r1 1051 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
323ad2ant1 976 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
4 simp1r2 1052 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
543ad2ant1 976 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
6 simp2 956 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  r  e.  A
)
7 simp3l 983 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  -.  r  .<_  W )
86, 7jca 518 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  ( r  e.  A  /\  -.  r  .<_  W ) )
9 simp1r3 1053 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  ->  S  e.  A )
1093ad2ant1 976 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  S  e.  A
)
11 simp3r 984 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  ( P  .\/  r )  =  ( Q  .\/  r ) )
12 simp12 986 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  P  =/=  Q
)
13 simp13 987 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  -.  S  .<_  ( P  .\/  Q ) )
14 4that.l . . . . . . 7  |-  .<_  =  ( le `  K )
15 4that.j . . . . . . 7  |-  .\/  =  ( join `  K )
16 eqid 2283 . . . . . . 7  |-  ( meet `  K )  =  (
meet `  K )
17 4that.a . . . . . . 7  |-  A  =  ( Atoms `  K )
18 4that.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
1914, 15, 16, 17, 184atexlemex6 30263 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( r  e.  A  /\  -.  r  .<_  W )  /\  S  e.  A )  /\  (
( P  .\/  r
)  =  ( Q 
.\/  r )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )
201, 3, 5, 8, 10, 11, 12, 13, 19syl323anc 1212 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )
2120rexlimdv3a 2669 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A ) )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) )  ->  ( E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z
) ) ) )
22213exp 1150 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
) )  ->  ( P  =/=  Q  ->  ( -.  S  .<_  ( P 
.\/  Q )  -> 
( E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z
) ) ) ) ) )
23223impd 1165 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
) )  ->  (
( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )
24233impia 1148 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   lecple 13215   joincjn 14078   meetcmee 14079   Atomscatm 29453   HLchlt 29540   LHypclh 30173
This theorem is referenced by:  4atex  30265  cdleme21i  30524
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688  df-lhyp 30177
  Copyright terms: Public domain W3C validator