Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemswapqr Unicode version

Theorem 4atexlemswapqr 30874
Description: Lemma for 4atexlem7 30886. Swap  Q and  R, so that theorems involving  C can be reused for  D. Note that  U must be expanded because it involves  Q. (Contributed by NM, 25-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) ) )
4thatlemslps.l  |-  .<_  =  ( le `  K )
4thatlemslps.j  |-  .\/  =  ( join `  K )
4thatlemslps.a  |-  A  =  ( Atoms `  K )
4thatlemsw.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
Assertion
Ref Expression
4atexlemswapqr  |-  ( ph  ->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( S  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W  /\  ( P  .\/  Q )  =  ( R  .\/  Q ) )  /\  ( T  e.  A  /\  ( ( ( P 
.\/  R )  ./\  W )  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  R  /\  -.  S  .<_  ( P 
.\/  R ) ) ) )

Proof of Theorem 4atexlemswapqr
StepHypRef Expression
1 4thatlem.ph . . . 4  |-  ( ph  <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) ) )
2 simp11 985 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
31, 2sylbi 187 . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
414atexlempw 30860 . . 3  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
5 simp22 989 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) ) )
6 3simpa 952 . . . . 5  |-  ( ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
75, 6syl 15 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
81, 7sylbi 187 . . 3  |-  ( ph  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
93, 4, 83jca 1132 . 2  |-  ( ph  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )
1014atexlems 30863 . . 3  |-  ( ph  ->  S  e.  A )
1114atexlemq 30862 . . . 4  |-  ( ph  ->  Q  e.  A )
12 simp13r 1071 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  -.  Q  .<_  W )
131, 12sylbi 187 . . . 4  |-  ( ph  ->  -.  Q  .<_  W )
1414atexlemkc 30869 . . . . 5  |-  ( ph  ->  K  e.  CvLat )
1514atexlemp 30861 . . . . 5  |-  ( ph  ->  P  e.  A )
168simpld 445 . . . . 5  |-  ( ph  ->  R  e.  A )
1714atexlempnq 30866 . . . . 5  |-  ( ph  ->  P  =/=  Q )
18 simp223 1098 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( P  .\/  R )  =  ( Q  .\/  R ) )
191, 18sylbi 187 . . . . 5  |-  ( ph  ->  ( P  .\/  R
)  =  ( Q 
.\/  R ) )
20 4thatlemslps.a . . . . . 6  |-  A  =  ( Atoms `  K )
21 4thatlemslps.j . . . . . 6  |-  .\/  =  ( join `  K )
2220, 21cvlsupr7 30160 . . . . 5  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  ( P  .\/  R
)  =  ( Q 
.\/  R ) ) )  ->  ( P  .\/  Q )  =  ( R  .\/  Q ) )
2314, 15, 11, 16, 17, 19, 22syl132anc 1200 . . . 4  |-  ( ph  ->  ( P  .\/  Q
)  =  ( R 
.\/  Q ) )
2411, 13, 233jca 1132 . . 3  |-  ( ph  ->  ( Q  e.  A  /\  -.  Q  .<_  W  /\  ( P  .\/  Q )  =  ( R  .\/  Q ) ) )
2514atexlemt 30864 . . . 4  |-  ( ph  ->  T  e.  A )
26 4thatlemsw.u . . . . . . 7  |-  U  =  ( ( P  .\/  Q )  ./\  W )
2720, 21cvlsupr8 30161 . . . . . . . . 9  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  ( P  .\/  R
)  =  ( Q 
.\/  R ) ) )  ->  ( P  .\/  Q )  =  ( P  .\/  R ) )
2814, 15, 11, 16, 17, 19, 27syl132anc 1200 . . . . . . . 8  |-  ( ph  ->  ( P  .\/  Q
)  =  ( P 
.\/  R ) )
2928oveq1d 5889 . . . . . . 7  |-  ( ph  ->  ( ( P  .\/  Q )  ./\  W )  =  ( ( P 
.\/  R )  ./\  W ) )
3026, 29syl5eq 2340 . . . . . 6  |-  ( ph  ->  U  =  ( ( P  .\/  R ) 
./\  W ) )
3130oveq1d 5889 . . . . 5  |-  ( ph  ->  ( U  .\/  T
)  =  ( ( ( P  .\/  R
)  ./\  W )  .\/  T ) )
3214atexlemutvt 30865 . . . . 5  |-  ( ph  ->  ( U  .\/  T
)  =  ( V 
.\/  T ) )
3331, 32eqtr3d 2330 . . . 4  |-  ( ph  ->  ( ( ( P 
.\/  R )  ./\  W )  .\/  T )  =  ( V  .\/  T ) )
3425, 33jca 518 . . 3  |-  ( ph  ->  ( T  e.  A  /\  ( ( ( P 
.\/  R )  ./\  W )  .\/  T )  =  ( V  .\/  T ) ) )
3510, 24, 343jca 1132 . 2  |-  ( ph  ->  ( S  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W  /\  ( P  .\/  Q )  =  ( R  .\/  Q ) )  /\  ( T  e.  A  /\  ( ( ( P 
.\/  R )  ./\  W )  .\/  T )  =  ( V  .\/  T ) ) ) )
3620, 21cvlsupr5 30158 . . . . 5  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  ( P  .\/  R
)  =  ( Q 
.\/  R ) ) )  ->  R  =/=  P )
3736necomd 2542 . . . 4  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  ( P  .\/  R
)  =  ( Q 
.\/  R ) ) )  ->  P  =/=  R )
3814, 15, 11, 16, 17, 19, 37syl132anc 1200 . . 3  |-  ( ph  ->  P  =/=  R )
3914atexlemnslpq 30867 . . . 4  |-  ( ph  ->  -.  S  .<_  ( P 
.\/  Q ) )
4028eqcomd 2301 . . . . 5  |-  ( ph  ->  ( P  .\/  R
)  =  ( P 
.\/  Q ) )
4140breq2d 4051 . . . 4  |-  ( ph  ->  ( S  .<_  ( P 
.\/  R )  <->  S  .<_  ( P  .\/  Q ) ) )
4239, 41mtbird 292 . . 3  |-  ( ph  ->  -.  S  .<_  ( P 
.\/  R ) )
4338, 42jca 518 . 2  |-  ( ph  ->  ( P  =/=  R  /\  -.  S  .<_  ( P 
.\/  R ) ) )
449, 35, 433jca 1132 1  |-  ( ph  ->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( S  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W  /\  ( P  .\/  Q )  =  ( R  .\/  Q ) )  /\  ( T  e.  A  /\  ( ( ( P 
.\/  R )  ./\  W )  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  R  /\  -.  S  .<_  ( P 
.\/  R ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   lecple 13231   joincjn 14094   Atomscatm 30075   CvLatclc 30077   HLchlt 30162
This theorem is referenced by:  4atexlemex4  30884
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-poset 14096  df-plt 14108  df-lub 14124  df-join 14126  df-lat 14168  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163
  Copyright terms: Public domain W3C validator