Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem11a Structured version   Unicode version

Theorem 4atlem11a 30406
Description: Lemma for 4at 30412. Substitute  U for  Q. (Contributed by NM, 9-Jul-2012.)
Hypotheses
Ref Expression
4at.l  |-  .<_  =  ( le `  K )
4at.j  |-  .\/  =  ( join `  K )
4at.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
4atlem11a  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  Q  .<_  ( ( P  .\/  V )  .\/  W ) )  ->  ( Q  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  <-> 
( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  =  ( ( P 
.\/  U )  .\/  ( V  .\/  W ) ) ) )

Proof of Theorem 4atlem11a
StepHypRef Expression
1 simp11 988 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  Q  .<_  ( ( P  .\/  V )  .\/  W ) )  ->  K  e.  HL )
2 simp13 990 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  Q  .<_  ( ( P  .\/  V )  .\/  W ) )  ->  Q  e.  A )
3 simp21 991 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  Q  .<_  ( ( P  .\/  V )  .\/  W ) )  ->  U  e.  A )
4 hllat 30163 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
51, 4syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  Q  .<_  ( ( P  .\/  V )  .\/  W ) )  ->  K  e.  Lat )
6 simp12 989 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  Q  .<_  ( ( P  .\/  V )  .\/  W ) )  ->  P  e.  A )
7 simp22 992 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  Q  .<_  ( ( P  .\/  V )  .\/  W ) )  ->  V  e.  A )
8 eqid 2438 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
9 4at.j . . . . . 6  |-  .\/  =  ( join `  K )
10 4at.a . . . . . 6  |-  A  =  ( Atoms `  K )
118, 9, 10hlatjcl 30166 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  V  e.  A )  ->  ( P  .\/  V
)  e.  ( Base `  K ) )
121, 6, 7, 11syl3anc 1185 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  Q  .<_  ( ( P  .\/  V )  .\/  W ) )  ->  ( P  .\/  V )  e.  (
Base `  K )
)
13 simp23 993 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  Q  .<_  ( ( P  .\/  V )  .\/  W ) )  ->  W  e.  A )
148, 10atbase 30089 . . . . 5  |-  ( W  e.  A  ->  W  e.  ( Base `  K
) )
1513, 14syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  Q  .<_  ( ( P  .\/  V )  .\/  W ) )  ->  W  e.  ( Base `  K )
)
168, 9latjcl 14481 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  .\/  V )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  V )  .\/  W )  e.  ( Base `  K ) )
175, 12, 15, 16syl3anc 1185 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  Q  .<_  ( ( P  .\/  V )  .\/  W ) )  ->  ( ( P  .\/  V )  .\/  W )  e.  ( Base `  K ) )
18 simp3 960 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  Q  .<_  ( ( P  .\/  V )  .\/  W ) )  ->  -.  Q  .<_  ( ( P  .\/  V )  .\/  W ) )
19 4at.l . . . 4  |-  .<_  =  ( le `  K )
208, 19, 9, 10hlexchb2 30184 . . 3  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  U  e.  A  /\  ( ( P  .\/  V )  .\/  W )  e.  ( Base `  K
) )  /\  -.  Q  .<_  ( ( P 
.\/  V )  .\/  W ) )  ->  ( Q  .<_  ( U  .\/  ( ( P  .\/  V )  .\/  W ) )  <->  ( Q  .\/  ( ( P  .\/  V )  .\/  W ) )  =  ( U 
.\/  ( ( P 
.\/  V )  .\/  W ) ) ) )
211, 2, 3, 17, 18, 20syl131anc 1198 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  Q  .<_  ( ( P  .\/  V )  .\/  W ) )  ->  ( Q  .<_  ( U  .\/  (
( P  .\/  V
)  .\/  W )
)  <->  ( Q  .\/  ( ( P  .\/  V )  .\/  W ) )  =  ( U 
.\/  ( ( P 
.\/  V )  .\/  W ) ) ) )
2219, 9, 104atlem4b 30399 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  U  e.  A )  /\  ( V  e.  A  /\  W  e.  A
) )  ->  (
( P  .\/  U
)  .\/  ( V  .\/  W ) )  =  ( U  .\/  (
( P  .\/  V
)  .\/  W )
) )
231, 6, 3, 7, 13, 22syl32anc 1193 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  Q  .<_  ( ( P  .\/  V )  .\/  W ) )  ->  ( ( P  .\/  U )  .\/  ( V  .\/  W ) )  =  ( U 
.\/  ( ( P 
.\/  V )  .\/  W ) ) )
2423breq2d 4226 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  Q  .<_  ( ( P  .\/  V )  .\/  W ) )  ->  ( Q  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  <-> 
Q  .<_  ( U  .\/  ( ( P  .\/  V )  .\/  W ) ) ) )
2519, 9, 104atlem4b 30399 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( V  e.  A  /\  W  e.  A
) )  ->  (
( P  .\/  Q
)  .\/  ( V  .\/  W ) )  =  ( Q  .\/  (
( P  .\/  V
)  .\/  W )
) )
261, 6, 2, 7, 13, 25syl32anc 1193 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  Q  .<_  ( ( P  .\/  V )  .\/  W ) )  ->  ( ( P  .\/  Q )  .\/  ( V  .\/  W ) )  =  ( Q 
.\/  ( ( P 
.\/  V )  .\/  W ) ) )
2726, 23eqeq12d 2452 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  Q  .<_  ( ( P  .\/  V )  .\/  W ) )  ->  ( (
( P  .\/  Q
)  .\/  ( V  .\/  W ) )  =  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  <-> 
( Q  .\/  (
( P  .\/  V
)  .\/  W )
)  =  ( U 
.\/  ( ( P 
.\/  V )  .\/  W ) ) ) )
2821, 24, 273bitr4d 278 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( U  e.  A  /\  V  e.  A  /\  W  e.  A
)  /\  -.  Q  .<_  ( ( P  .\/  V )  .\/  W ) )  ->  ( Q  .<_  ( ( P  .\/  U )  .\/  ( V 
.\/  W ) )  <-> 
( ( P  .\/  Q )  .\/  ( V 
.\/  W ) )  =  ( ( P 
.\/  U )  .\/  ( V  .\/  W ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ w3a 937    = wceq 1653    e. wcel 1726   class class class wbr 4214   ` cfv 5456  (class class class)co 6083   Basecbs 13471   lecple 13538   joincjn 14403   Latclat 14476   Atomscatm 30063   HLchlt 30150
This theorem is referenced by:  4atlem11b  30407
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-undef 6545  df-riota 6551  df-poset 14405  df-lub 14433  df-join 14435  df-lat 14477  df-ats 30067  df-atl 30098  df-cvlat 30122  df-hlat 30151
  Copyright terms: Public domain W3C validator