Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem4d Structured version   Unicode version

Theorem 4atlem4d 30400
Description: Lemma for 4at 30411. Frequently used associative law. (Contributed by NM, 9-Jul-2012.)
Hypotheses
Ref Expression
4at.l  |-  .<_  =  ( le `  K )
4at.j  |-  .\/  =  ( join `  K )
4at.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
4atlem4d  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  (
( P  .\/  Q
)  .\/  ( R  .\/  S ) )  =  ( S  .\/  (
( P  .\/  Q
)  .\/  R )
) )

Proof of Theorem 4atlem4d
StepHypRef Expression
1 simpl1 961 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  K  e.  HL )
2 hllat 30162 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
31, 2syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  K  e.  Lat )
4 eqid 2437 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
5 4at.j . . . . 5  |-  .\/  =  ( join `  K )
6 4at.a . . . . 5  |-  A  =  ( Atoms `  K )
74, 5, 6hlatjcl 30165 . . . 4  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
87adantr 453 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
94, 6atbase 30088 . . . 4  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
109ad2antrl 710 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  R  e.  ( Base `  K
) )
114, 6atbase 30088 . . . 4  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
1211ad2antll 711 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  S  e.  ( Base `  K
) )
134, 5latjass 14525 . . 3  |-  ( ( K  e.  Lat  /\  ( ( P  .\/  Q )  e.  ( Base `  K )  /\  R  e.  ( Base `  K
)  /\  S  e.  ( Base `  K )
) )  ->  (
( ( P  .\/  Q )  .\/  R ) 
.\/  S )  =  ( ( P  .\/  Q )  .\/  ( R 
.\/  S ) ) )
143, 8, 10, 12, 13syl13anc 1187 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  (
( ( P  .\/  Q )  .\/  R ) 
.\/  S )  =  ( ( P  .\/  Q )  .\/  ( R 
.\/  S ) ) )
154, 5latjcl 14480 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  R  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  .\/  R )  e.  ( Base `  K ) )
163, 8, 10, 15syl3anc 1185 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  (
( P  .\/  Q
)  .\/  R )  e.  ( Base `  K
) )
174, 5latjcom 14489 . . 3  |-  ( ( K  e.  Lat  /\  ( ( P  .\/  Q )  .\/  R )  e.  ( Base `  K
)  /\  S  e.  ( Base `  K )
)  ->  ( (
( P  .\/  Q
)  .\/  R )  .\/  S )  =  ( S  .\/  ( ( P  .\/  Q ) 
.\/  R ) ) )
183, 16, 12, 17syl3anc 1185 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  (
( ( P  .\/  Q )  .\/  R ) 
.\/  S )  =  ( S  .\/  (
( P  .\/  Q
)  .\/  R )
) )
1914, 18eqtr3d 2471 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
) )  ->  (
( P  .\/  Q
)  .\/  ( R  .\/  S ) )  =  ( S  .\/  (
( P  .\/  Q
)  .\/  R )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   ` cfv 5455  (class class class)co 6082   Basecbs 13470   lecple 13537   joincjn 14402   Latclat 14475   Atomscatm 30062   HLchlt 30149
This theorem is referenced by:  4atlem9  30401
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-id 4499  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-undef 6544  df-riota 6550  df-poset 14404  df-lub 14432  df-join 14434  df-lat 14476  df-ats 30066  df-atl 30097  df-cvlat 30121  df-hlat 30150
  Copyright terms: Public domain W3C validator