MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4ipval2 Unicode version

Theorem 4ipval2 22054
Description: Four times the inner product value ipval3 22055, useful for simplifying certain proofs. (Contributed by NM, 10-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipfval.1  |-  X  =  ( BaseSet `  U )
dipfval.2  |-  G  =  ( +v `  U
)
dipfval.4  |-  S  =  ( .s OLD `  U
)
dipfval.6  |-  N  =  ( normCV `  U )
dipfval.7  |-  P  =  ( .i OLD `  U
)
Assertion
Ref Expression
4ipval2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
4  x.  ( A P B ) )  =  ( ( ( ( N `  ( A G B ) ) ^ 2 )  -  ( ( N `  ( A G ( -u
1 S B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( A G ( _i S B ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) )

Proof of Theorem 4ipval2
StepHypRef Expression
1 dipfval.1 . . . 4  |-  X  =  ( BaseSet `  U )
2 dipfval.2 . . . 4  |-  G  =  ( +v `  U
)
3 dipfval.4 . . . 4  |-  S  =  ( .s OLD `  U
)
4 dipfval.6 . . . 4  |-  N  =  ( normCV `  U )
5 dipfval.7 . . . 4  |-  P  =  ( .i OLD `  U
)
61, 2, 3, 4, 5ipval2 22053 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A P B )  =  ( ( ( ( ( N `  ( A G B ) ) ^ 2 )  -  ( ( N `  ( A G ( -u
1 S B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( A G ( _i S B ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) )  / 
4 ) )
76oveq2d 6038 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
4  x.  ( A P B ) )  =  ( 4  x.  ( ( ( ( ( N `  ( A G B ) ) ^ 2 )  -  ( ( N `  ( A G ( -u
1 S B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( A G ( _i S B ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) )  / 
4 ) ) )
8 simp1 957 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  U  e.  NrmCVec )
91, 2nvgcl 21949 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X )
101, 4nvcl 21998 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  ( A G B )  e.  X )  ->  ( N `  ( A G B ) )  e.  RR )
118, 9, 10syl2anc 643 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G B ) )  e.  RR )
1211recnd 9049 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G B ) )  e.  CC )
1312sqcld 11450 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( N `  ( A G B ) ) ^ 2 )  e.  CC )
14 neg1cn 10001 . . . . . . . . . . 11  |-  -u 1  e.  CC
151, 3nvscl 21957 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC  /\  B  e.  X )  ->  ( -u 1 S B )  e.  X )
1614, 15mp3an2 1267 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  ( -u 1 S B )  e.  X )
17163adant2 976 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( -u 1 S B )  e.  X )
181, 2nvgcl 21949 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  ( -u 1 S B )  e.  X )  -> 
( A G (
-u 1 S B ) )  e.  X
)
1917, 18syld3an3 1229 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A G ( -u 1 S B ) )  e.  X )
201, 4nvcl 21998 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  ( A G ( -u 1 S B ) )  e.  X )  ->  ( N `  ( A G ( -u 1 S B ) ) )  e.  RR )
218, 19, 20syl2anc 643 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G ( -u 1 S B ) ) )  e.  RR )
2221recnd 9049 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G ( -u 1 S B ) ) )  e.  CC )
2322sqcld 11450 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( N `  ( A G ( -u 1 S B ) ) ) ^ 2 )  e.  CC )
2413, 23subcld 9345 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( N `  ( A G B ) ) ^ 2 )  -  ( ( N `
 ( A G ( -u 1 S B ) ) ) ^ 2 ) )  e.  CC )
25 ax-icn 8984 . . . . 5  |-  _i  e.  CC
261, 3nvscl 21957 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  _i  e.  CC  /\  B  e.  X )  ->  (
_i S B )  e.  X )
2725, 26mp3an2 1267 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  (
_i S B )  e.  X )
28273adant2 976 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
_i S B )  e.  X )
291, 2nvgcl 21949 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  (
_i S B )  e.  X )  -> 
( A G ( _i S B ) )  e.  X )
3028, 29syld3an3 1229 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A G ( _i S B ) )  e.  X )
311, 4nvcl 21998 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  ( A G ( _i S B ) )  e.  X )  ->  ( N `  ( A G ( _i S B ) ) )  e.  RR )
328, 30, 31syl2anc 643 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G ( _i S B ) ) )  e.  RR )
3332recnd 9049 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G ( _i S B ) ) )  e.  CC )
3433sqcld 11450 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( N `  ( A G ( _i S B ) ) ) ^ 2 )  e.  CC )
3525negcli 9302 . . . . . . . . . . . 12  |-  -u _i  e.  CC
361, 3nvscl 21957 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  -u _i  e.  CC  /\  B  e.  X )  ->  ( -u _i S B )  e.  X )
3735, 36mp3an2 1267 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  ( -u _i S B )  e.  X )
38373adant2 976 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( -u _i S B )  e.  X )
391, 2nvgcl 21949 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  ( -u _i S B )  e.  X )  -> 
( A G (
-u _i S B ) )  e.  X
)
4038, 39syld3an3 1229 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A G ( -u _i S B ) )  e.  X )
411, 4nvcl 21998 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  ( A G ( -u _i S B ) )  e.  X )  ->  ( N `  ( A G ( -u _i S B ) ) )  e.  RR )
428, 40, 41syl2anc 643 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G ( -u _i S B ) ) )  e.  RR )
4342recnd 9049 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G ( -u _i S B ) ) )  e.  CC )
4443sqcld 11450 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( N `  ( A G ( -u _i S B ) ) ) ^ 2 )  e.  CC )
4534, 44subcld 9345 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( N `  ( A G ( _i S B ) ) ) ^ 2 )  -  ( ( N `
 ( A G ( -u _i S B ) ) ) ^ 2 ) )  e.  CC )
46 mulcl 9009 . . . . 5  |-  ( ( _i  e.  CC  /\  ( ( ( N `
 ( A G ( _i S B ) ) ) ^
2 )  -  (
( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) )  e.  CC )  -> 
( _i  x.  (
( ( N `  ( A G ( _i S B ) ) ) ^ 2 )  -  ( ( N `
 ( A G ( -u _i S B ) ) ) ^ 2 ) ) )  e.  CC )
4725, 45, 46sylancr 645 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
_i  x.  ( (
( N `  ( A G ( _i S B ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) )  e.  CC )
4824, 47addcld 9042 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( N `
 ( A G B ) ) ^
2 )  -  (
( N `  ( A G ( -u 1 S B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `
 ( A G ( _i S B ) ) ) ^
2 )  -  (
( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) )  e.  CC )
49 4cn 10008 . . . 4  |-  4  e.  CC
50 4re 10007 . . . . 5  |-  4  e.  RR
51 4pos 10020 . . . . 5  |-  0  <  4
5250, 51gt0ne0ii 9497 . . . 4  |-  4  =/=  0
53 divcan2 9620 . . . 4  |-  ( ( ( ( ( ( N `  ( A G B ) ) ^ 2 )  -  ( ( N `  ( A G ( -u
1 S B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( A G ( _i S B ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) )  e.  CC  /\  4  e.  CC  /\  4  =/=  0 )  ->  (
4  x.  ( ( ( ( ( N `
 ( A G B ) ) ^
2 )  -  (
( N `  ( A G ( -u 1 S B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `
 ( A G ( _i S B ) ) ) ^
2 )  -  (
( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) )  /  4
) )  =  ( ( ( ( N `
 ( A G B ) ) ^
2 )  -  (
( N `  ( A G ( -u 1 S B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `
 ( A G ( _i S B ) ) ) ^
2 )  -  (
( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) )
5449, 52, 53mp3an23 1271 . . 3  |-  ( ( ( ( ( N `
 ( A G B ) ) ^
2 )  -  (
( N `  ( A G ( -u 1 S B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `
 ( A G ( _i S B ) ) ) ^
2 )  -  (
( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) )  e.  CC  ->  ( 4  x.  (
( ( ( ( N `  ( A G B ) ) ^ 2 )  -  ( ( N `  ( A G ( -u
1 S B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( A G ( _i S B ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) )  / 
4 ) )  =  ( ( ( ( N `  ( A G B ) ) ^ 2 )  -  ( ( N `  ( A G ( -u
1 S B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( A G ( _i S B ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) )
5548, 54syl 16 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
4  x.  ( ( ( ( ( N `
 ( A G B ) ) ^
2 )  -  (
( N `  ( A G ( -u 1 S B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `
 ( A G ( _i S B ) ) ) ^
2 )  -  (
( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) )  /  4
) )  =  ( ( ( ( N `
 ( A G B ) ) ^
2 )  -  (
( N `  ( A G ( -u 1 S B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `
 ( A G ( _i S B ) ) ) ^
2 )  -  (
( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) )
567, 55eqtrd 2421 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
4  x.  ( A P B ) )  =  ( ( ( ( N `  ( A G B ) ) ^ 2 )  -  ( ( N `  ( A G ( -u
1 S B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( A G ( _i S B ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2552   ` cfv 5396  (class class class)co 6022   CCcc 8923   RRcr 8924   0cc0 8925   1c1 8926   _ici 8927    + caddc 8928    x. cmul 8930    - cmin 9225   -ucneg 9226    / cdiv 9611   2c2 9983   4c4 9985   ^cexp 11311   NrmCVeccnv 21913   +vcpv 21914   BaseSetcba 21915   .s
OLDcns 21916   normCVcnmcv 21919   .i OLDcdip 22046
This theorem is referenced by:  ip1ilem  22177  ipasslem10  22190
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-inf2 7531  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002  ax-pre-sup 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-se 4485  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-isom 5405  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-oadd 6666  df-er 6843  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-sup 7383  df-oi 7414  df-card 7761  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-div 9612  df-nn 9935  df-2 9992  df-3 9993  df-4 9994  df-n0 10156  df-z 10217  df-uz 10423  df-rp 10547  df-fz 10978  df-fzo 11068  df-seq 11253  df-exp 11312  df-hash 11548  df-cj 11833  df-re 11834  df-im 11835  df-sqr 11969  df-abs 11970  df-clim 12211  df-sum 12409  df-grpo 21629  df-ablo 21720  df-vc 21875  df-nv 21921  df-va 21924  df-ba 21925  df-sm 21926  df-0v 21927  df-nmcv 21929  df-dip 22047
  Copyright terms: Public domain W3C validator