MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem18 Unicode version

Theorem 4sqlem18 13025
Description: Lemma for 4sq 13027. Inductive step, odd prime case. (Contributed by Mario Carneiro, 16-Jul-2014.)
Hypotheses
Ref Expression
4sq.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
4sq.2  |-  ( ph  ->  N  e.  NN )
4sq.3  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
4sq.4  |-  ( ph  ->  P  e.  Prime )
4sq.5  |-  ( ph  ->  ( 0 ... (
2  x.  N ) )  C_  S )
4sq.6  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
4sq.7  |-  M  =  sup ( T ,  RR ,  `'  <  )
Assertion
Ref Expression
4sqlem18  |-  ( ph  ->  P  e.  S )
Distinct variable groups:    w, n, x, y, z    i, n, M    n, N    P, i, n    ph, n    S, i, n
Allowed substitution hints:    ph( x, y, z, w, i)    P( x, y, z, w)    S( x, y, z, w)    T( x, y, z, w, i, n)    M( x, y, z, w)    N( x, y, z, w, i)

Proof of Theorem 4sqlem18
Dummy variables  a 
b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sq.4 . . . . 5  |-  ( ph  ->  P  e.  Prime )
2 prmnn 12777 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
31, 2syl 15 . . . 4  |-  ( ph  ->  P  e.  NN )
43nncnd 9778 . . 3  |-  ( ph  ->  P  e.  CC )
54mulid2d 8869 . 2  |-  ( ph  ->  ( 1  x.  P
)  =  P )
6 4sq.7 . . . . . . . . . . . . 13  |-  M  =  sup ( T ,  RR ,  `'  <  )
7 4sq.6 . . . . . . . . . . . . . . . 16  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
8 ssrab2 3271 . . . . . . . . . . . . . . . 16  |-  { i  e.  NN  |  ( i  x.  P )  e.  S }  C_  NN
97, 8eqsstri 3221 . . . . . . . . . . . . . . 15  |-  T  C_  NN
10 nnuz 10279 . . . . . . . . . . . . . . 15  |-  NN  =  ( ZZ>= `  1 )
119, 10sseqtri 3223 . . . . . . . . . . . . . 14  |-  T  C_  ( ZZ>= `  1 )
12 4sq.1 . . . . . . . . . . . . . . . 16  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
13 4sq.2 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  NN )
14 4sq.3 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
15 4sq.5 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 0 ... (
2  x.  N ) )  C_  S )
1612, 13, 14, 1, 15, 7, 64sqlem13 13020 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( T  =/=  (/)  /\  M  <  P ) )
1716simpld 445 . . . . . . . . . . . . . 14  |-  ( ph  ->  T  =/=  (/) )
18 infmssuzcl 10317 . . . . . . . . . . . . . 14  |-  ( ( T  C_  ( ZZ>= ` 
1 )  /\  T  =/=  (/) )  ->  sup ( T ,  RR ,  `'  <  )  e.  T
)
1911, 17, 18sylancr 644 . . . . . . . . . . . . 13  |-  ( ph  ->  sup ( T ,  RR ,  `'  <  )  e.  T )
206, 19syl5eqel 2380 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  T )
21 oveq1 5881 . . . . . . . . . . . . . 14  |-  ( i  =  M  ->  (
i  x.  P )  =  ( M  x.  P ) )
2221eleq1d 2362 . . . . . . . . . . . . 13  |-  ( i  =  M  ->  (
( i  x.  P
)  e.  S  <->  ( M  x.  P )  e.  S
) )
2322, 7elrab2 2938 . . . . . . . . . . . 12  |-  ( M  e.  T  <->  ( M  e.  NN  /\  ( M  x.  P )  e.  S ) )
2420, 23sylib 188 . . . . . . . . . . 11  |-  ( ph  ->  ( M  e.  NN  /\  ( M  x.  P
)  e.  S ) )
2524simprd 449 . . . . . . . . . 10  |-  ( ph  ->  ( M  x.  P
)  e.  S )
26124sqlem2 13012 . . . . . . . . . 10  |-  ( ( M  x.  P )  e.  S  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  ( M  x.  P )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
2725, 26sylib 188 . . . . . . . . 9  |-  ( ph  ->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  ( M  x.  P )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
2827adantr 451 . . . . . . . 8  |-  ( (
ph  /\  M  e.  ( ZZ>= `  2 )
)  ->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  ( M  x.  P )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
29 simp1l 979 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  ph )
3029, 13syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  N  e.  NN )
3129, 14syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  P  =  ( ( 2  x.  N )  +  1 ) )
3229, 1syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  P  e.  Prime )
3329, 15syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  (
0 ... ( 2  x.  N ) )  C_  S )
34 simp1r 980 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  M  e.  ( ZZ>= `  2 )
)
35 simp2ll 1022 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  a  e.  ZZ )
36 simp2lr 1023 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  b  e.  ZZ )
37 simp2rl 1024 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  c  e.  ZZ )
38 simp2rr 1025 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  d  e.  ZZ )
39 eqid 2296 . . . . . . . . . . . . . 14  |-  ( ( ( a  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  =  ( ( ( a  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
40 eqid 2296 . . . . . . . . . . . . . 14  |-  ( ( ( b  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  =  ( ( ( b  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
41 eqid 2296 . . . . . . . . . . . . . 14  |-  ( ( ( c  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  =  ( ( ( c  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
42 eqid 2296 . . . . . . . . . . . . . 14  |-  ( ( ( d  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  =  ( ( ( d  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
43 eqid 2296 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( a  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) ) ^
2 )  +  ( ( ( ( b  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) ) ^ 2 ) )  +  ( ( ( ( ( c  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) ) ^ 2 )  +  ( ( ( ( d  +  ( M  /  2 ) )  mod  M )  -  ( M  /  2
) ) ^ 2 ) ) )  /  M )  =  ( ( ( ( ( ( ( a  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) ) ^ 2 )  +  ( ( ( ( b  +  ( M  /  2 ) )  mod  M )  -  ( M  /  2
) ) ^ 2 ) )  +  ( ( ( ( ( c  +  ( M  /  2 ) )  mod  M )  -  ( M  /  2
) ) ^ 2 )  +  ( ( ( ( d  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) ) ^ 2 ) ) )  /  M )
44 simp3 957 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) ) )
4512, 30, 31, 32, 33, 7, 6, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 444sqlem17 13024 . . . . . . . . . . . . 13  |-  -.  (
( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )
4645pm2.21i 123 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  -.  M  e.  ( ZZ>= ` 
2 ) )
47463expia 1153 . . . . . . . . . . 11  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) ) )  ->  (
( M  x.  P
)  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  ->  -.  M  e.  ( ZZ>=
`  2 ) ) )
4847anassrs 629 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  M  e.  ( ZZ>= ` 
2 ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( ( M  x.  P )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  -.  M  e.  ( ZZ>= `  2 )
) )
4948rexlimdvva 2687 . . . . . . . . 9  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( E. c  e.  ZZ  E. d  e.  ZZ  ( M  x.  P )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  -.  M  e.  ( ZZ>= `  2 )
) )
5049rexlimdvva 2687 . . . . . . . 8  |-  ( (
ph  /\  M  e.  ( ZZ>= `  2 )
)  ->  ( E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  ( M  x.  P )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  -.  M  e.  ( ZZ>= `  2 )
) )
5128, 50mpd 14 . . . . . . 7  |-  ( (
ph  /\  M  e.  ( ZZ>= `  2 )
)  ->  -.  M  e.  ( ZZ>= `  2 )
)
5251ex 423 . . . . . 6  |-  ( ph  ->  ( M  e.  (
ZZ>= `  2 )  ->  -.  M  e.  ( ZZ>=
`  2 ) ) )
5352pm2.01d 161 . . . . 5  |-  ( ph  ->  -.  M  e.  (
ZZ>= `  2 ) )
5424simpld 445 . . . . . . 7  |-  ( ph  ->  M  e.  NN )
55 elnn1uz2 10310 . . . . . . 7  |-  ( M  e.  NN  <->  ( M  =  1  \/  M  e.  ( ZZ>= `  2 )
) )
5654, 55sylib 188 . . . . . 6  |-  ( ph  ->  ( M  =  1  \/  M  e.  (
ZZ>= `  2 ) ) )
5756ord 366 . . . . 5  |-  ( ph  ->  ( -.  M  =  1  ->  M  e.  ( ZZ>= `  2 )
) )
5853, 57mt3d 117 . . . 4  |-  ( ph  ->  M  =  1 )
5958, 20eqeltrrd 2371 . . 3  |-  ( ph  ->  1  e.  T )
60 oveq1 5881 . . . . . 6  |-  ( i  =  1  ->  (
i  x.  P )  =  ( 1  x.  P ) )
6160eleq1d 2362 . . . . 5  |-  ( i  =  1  ->  (
( i  x.  P
)  e.  S  <->  ( 1  x.  P )  e.  S ) )
6261, 7elrab2 2938 . . . 4  |-  ( 1  e.  T  <->  ( 1  e.  NN  /\  (
1  x.  P )  e.  S ) )
6362simprbi 450 . . 3  |-  ( 1  e.  T  ->  (
1  x.  P )  e.  S )
6459, 63syl 15 . 2  |-  ( ph  ->  ( 1  x.  P
)  e.  S )
655, 64eqeltrrd 2371 1  |-  ( ph  ->  P  e.  S )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   {cab 2282    =/= wne 2459   E.wrex 2557   {crab 2560    C_ wss 3165   (/)c0 3468   class class class wbr 4039   `'ccnv 4704   ` cfv 5271  (class class class)co 5874   supcsup 7209   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    - cmin 9053    / cdiv 9439   NNcn 9762   2c2 9811   ZZcz 10040   ZZ>=cuz 10246   ...cfz 10798    mod cmo 10989   ^cexp 11120   Primecprime 12774
This theorem is referenced by:  4sqlem19  13026
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-fz 10799  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-dvds 12548  df-gcd 12702  df-prm 12775  df-gz 12993
  Copyright terms: Public domain W3C validator