MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem7 Structured version   Unicode version

Theorem 4sqlem7 13302
Description: Lemma for 4sq 13322. (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2  |-  ( ph  ->  A  e.  ZZ )
4sqlem5.3  |-  ( ph  ->  M  e.  NN )
4sqlem5.4  |-  B  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
Assertion
Ref Expression
4sqlem7  |-  ( ph  ->  ( B ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )

Proof of Theorem 4sqlem7
StepHypRef Expression
1 4sqlem5.2 . . . . . . 7  |-  ( ph  ->  A  e.  ZZ )
2 4sqlem5.3 . . . . . . 7  |-  ( ph  ->  M  e.  NN )
3 4sqlem5.4 . . . . . . 7  |-  B  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
41, 2, 34sqlem5 13300 . . . . . 6  |-  ( ph  ->  ( B  e.  ZZ  /\  ( ( A  -  B )  /  M
)  e.  ZZ ) )
54simpld 446 . . . . 5  |-  ( ph  ->  B  e.  ZZ )
65zred 10365 . . . 4  |-  ( ph  ->  B  e.  RR )
72nnrpd 10637 . . . . . 6  |-  ( ph  ->  M  e.  RR+ )
87rphalfcld 10650 . . . . 5  |-  ( ph  ->  ( M  /  2
)  e.  RR+ )
98rpred 10638 . . . 4  |-  ( ph  ->  ( M  /  2
)  e.  RR )
101, 2, 34sqlem6 13301 . . . . 5  |-  ( ph  ->  ( -u ( M  /  2 )  <_  B  /\  B  <  ( M  /  2 ) ) )
1110simprd 450 . . . 4  |-  ( ph  ->  B  <  ( M  /  2 ) )
126, 9, 11ltled 9211 . . 3  |-  ( ph  ->  B  <_  ( M  /  2 ) )
1310simpld 446 . . . 4  |-  ( ph  -> 
-u ( M  / 
2 )  <_  B
)
149, 6, 13lenegcon1d 9598 . . 3  |-  ( ph  -> 
-u B  <_  ( M  /  2 ) )
158rpge0d 10642 . . . 4  |-  ( ph  ->  0  <_  ( M  /  2 ) )
16 lenegsq 12114 . . . 4  |-  ( ( B  e.  RR  /\  ( M  /  2
)  e.  RR  /\  0  <_  ( M  / 
2 ) )  -> 
( ( B  <_ 
( M  /  2
)  /\  -u B  <_ 
( M  /  2
) )  <->  ( B ^ 2 )  <_ 
( ( M  / 
2 ) ^ 2 ) ) )
176, 9, 15, 16syl3anc 1184 . . 3  |-  ( ph  ->  ( ( B  <_ 
( M  /  2
)  /\  -u B  <_ 
( M  /  2
) )  <->  ( B ^ 2 )  <_ 
( ( M  / 
2 ) ^ 2 ) ) )
1812, 14, 17mpbi2and 888 . 2  |-  ( ph  ->  ( B ^ 2 )  <_  ( ( M  /  2 ) ^
2 ) )
19 2cn 10060 . . . . . 6  |-  2  e.  CC
2019a1i 11 . . . . 5  |-  ( ph  ->  2  e.  CC )
2120sqvald 11510 . . . 4  |-  ( ph  ->  ( 2 ^ 2 )  =  ( 2  x.  2 ) )
2221oveq2d 6089 . . 3  |-  ( ph  ->  ( ( M ^
2 )  /  (
2 ^ 2 ) )  =  ( ( M ^ 2 )  /  ( 2  x.  2 ) ) )
232nncnd 10006 . . . 4  |-  ( ph  ->  M  e.  CC )
24 2ne0 10073 . . . . 5  |-  2  =/=  0
2524a1i 11 . . . 4  |-  ( ph  ->  2  =/=  0 )
2623, 20, 25sqdivd 11526 . . 3  |-  ( ph  ->  ( ( M  / 
2 ) ^ 2 )  =  ( ( M ^ 2 )  /  ( 2 ^ 2 ) ) )
2723sqcld 11511 . . . 4  |-  ( ph  ->  ( M ^ 2 )  e.  CC )
2827, 20, 20, 25, 25divdiv1d 9811 . . 3  |-  ( ph  ->  ( ( ( M ^ 2 )  / 
2 )  /  2
)  =  ( ( M ^ 2 )  /  ( 2  x.  2 ) ) )
2922, 26, 283eqtr4d 2477 . 2  |-  ( ph  ->  ( ( M  / 
2 ) ^ 2 )  =  ( ( ( M ^ 2 )  /  2 )  /  2 ) )
3018, 29breqtrd 4228 1  |-  ( ph  ->  ( B ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   class class class wbr 4204  (class class class)co 6073   CCcc 8978   RRcr 8979   0cc0 8980    + caddc 8983    x. cmul 8985    < clt 9110    <_ cle 9111    - cmin 9281   -ucneg 9282    / cdiv 9667   NNcn 9990   2c2 10039   ZZcz 10272    mod cmo 11240   ^cexp 11372
This theorem is referenced by:  4sqlem15  13317  4sqlem16  13318  2sqlem8  21146
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057  ax-pre-sup 9058
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-div 9668  df-nn 9991  df-2 10048  df-3 10049  df-n0 10212  df-z 10273  df-uz 10479  df-rp 10603  df-fl 11192  df-mod 11241  df-seq 11314  df-exp 11373  df-cj 11894  df-re 11895  df-im 11896  df-sqr 12030  df-abs 12031
  Copyright terms: Public domain W3C validator