MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem8 Structured version   Unicode version

Theorem 4sqlem8 13305
Description: Lemma for 4sq 13324. (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2  |-  ( ph  ->  A  e.  ZZ )
4sqlem5.3  |-  ( ph  ->  M  e.  NN )
4sqlem5.4  |-  B  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
Assertion
Ref Expression
4sqlem8  |-  ( ph  ->  M  ||  ( ( A ^ 2 )  -  ( B ^
2 ) ) )

Proof of Theorem 4sqlem8
StepHypRef Expression
1 4sqlem5.2 . . . . 5  |-  ( ph  ->  A  e.  ZZ )
2 4sqlem5.3 . . . . 5  |-  ( ph  ->  M  e.  NN )
3 4sqlem5.4 . . . . 5  |-  B  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
41, 2, 34sqlem5 13302 . . . 4  |-  ( ph  ->  ( B  e.  ZZ  /\  ( ( A  -  B )  /  M
)  e.  ZZ ) )
54simprd 450 . . 3  |-  ( ph  ->  ( ( A  -  B )  /  M
)  e.  ZZ )
62nnzd 10366 . . . 4  |-  ( ph  ->  M  e.  ZZ )
72nnne0d 10036 . . . 4  |-  ( ph  ->  M  =/=  0 )
84simpld 446 . . . . 5  |-  ( ph  ->  B  e.  ZZ )
91, 8zsubcld 10372 . . . 4  |-  ( ph  ->  ( A  -  B
)  e.  ZZ )
10 dvdsval2 12847 . . . 4  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  ( A  -  B )  e.  ZZ )  ->  ( M  ||  ( A  -  B )  <->  ( ( A  -  B )  /  M )  e.  ZZ ) )
116, 7, 9, 10syl3anc 1184 . . 3  |-  ( ph  ->  ( M  ||  ( A  -  B )  <->  ( ( A  -  B
)  /  M )  e.  ZZ ) )
125, 11mpbird 224 . 2  |-  ( ph  ->  M  ||  ( A  -  B ) )
131, 8zaddcld 10371 . . . 4  |-  ( ph  ->  ( A  +  B
)  e.  ZZ )
14 dvdsmul2 12864 . . . 4  |-  ( ( ( A  +  B
)  e.  ZZ  /\  ( A  -  B
)  e.  ZZ )  ->  ( A  -  B )  ||  (
( A  +  B
)  x.  ( A  -  B ) ) )
1513, 9, 14syl2anc 643 . . 3  |-  ( ph  ->  ( A  -  B
)  ||  ( ( A  +  B )  x.  ( A  -  B
) ) )
161zcnd 10368 . . . 4  |-  ( ph  ->  A  e.  CC )
178zcnd 10368 . . . 4  |-  ( ph  ->  B  e.  CC )
18 subsq 11480 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  -  ( B ^ 2 ) )  =  ( ( A  +  B )  x.  ( A  -  B
) ) )
1916, 17, 18syl2anc 643 . . 3  |-  ( ph  ->  ( ( A ^
2 )  -  ( B ^ 2 ) )  =  ( ( A  +  B )  x.  ( A  -  B
) ) )
2015, 19breqtrrd 4230 . 2  |-  ( ph  ->  ( A  -  B
)  ||  ( ( A ^ 2 )  -  ( B ^ 2 ) ) )
21 zsqcl 11444 . . . . 5  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
221, 21syl 16 . . . 4  |-  ( ph  ->  ( A ^ 2 )  e.  ZZ )
23 zsqcl 11444 . . . . 5  |-  ( B  e.  ZZ  ->  ( B ^ 2 )  e.  ZZ )
248, 23syl 16 . . . 4  |-  ( ph  ->  ( B ^ 2 )  e.  ZZ )
2522, 24zsubcld 10372 . . 3  |-  ( ph  ->  ( ( A ^
2 )  -  ( B ^ 2 ) )  e.  ZZ )
26 dvdstr 12875 . . 3  |-  ( ( M  e.  ZZ  /\  ( A  -  B
)  e.  ZZ  /\  ( ( A ^
2 )  -  ( B ^ 2 ) )  e.  ZZ )  -> 
( ( M  ||  ( A  -  B
)  /\  ( A  -  B )  ||  (
( A ^ 2 )  -  ( B ^ 2 ) ) )  ->  M  ||  (
( A ^ 2 )  -  ( B ^ 2 ) ) ) )
276, 9, 25, 26syl3anc 1184 . 2  |-  ( ph  ->  ( ( M  ||  ( A  -  B
)  /\  ( A  -  B )  ||  (
( A ^ 2 )  -  ( B ^ 2 ) ) )  ->  M  ||  (
( A ^ 2 )  -  ( B ^ 2 ) ) ) )
2812, 20, 27mp2and 661 1  |-  ( ph  ->  M  ||  ( ( A ^ 2 )  -  ( B ^
2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   class class class wbr 4204  (class class class)co 6073   CCcc 8980   0cc0 8982    + caddc 8985    x. cmul 8987    - cmin 9283    / cdiv 9669   NNcn 9992   2c2 10041   ZZcz 10274    mod cmo 11242   ^cexp 11374    || cdivides 12844
This theorem is referenced by:  4sqlem14  13318  2sqlem8  21148
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-fl 11194  df-mod 11243  df-seq 11316  df-exp 11375  df-dvds 12845
  Copyright terms: Public domain W3C validator