MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem9 Unicode version

Theorem 4sqlem9 13009
Description: Lemma for 4sq 13027. (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2  |-  ( ph  ->  A  e.  ZZ )
4sqlem5.3  |-  ( ph  ->  M  e.  NN )
4sqlem5.4  |-  B  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sqlem9.5  |-  ( (
ph  /\  ps )  ->  ( B ^ 2 )  =  0 )
Assertion
Ref Expression
4sqlem9  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  ||  ( A ^ 2 ) )

Proof of Theorem 4sqlem9
StepHypRef Expression
1 4sqlem9.5 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  ( B ^ 2 )  =  0 )
2 4sqlem5.2 . . . . . . . . . . . . 13  |-  ( ph  ->  A  e.  ZZ )
3 4sqlem5.3 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  NN )
4 4sqlem5.4 . . . . . . . . . . . . 13  |-  B  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
52, 3, 44sqlem5 13005 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  e.  ZZ  /\  ( ( A  -  B )  /  M
)  e.  ZZ ) )
65simpld 445 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  ZZ )
76zcnd 10134 . . . . . . . . . 10  |-  ( ph  ->  B  e.  CC )
8 sqeq0 11184 . . . . . . . . . 10  |-  ( B  e.  CC  ->  (
( B ^ 2 )  =  0  <->  B  =  0 ) )
97, 8syl 15 . . . . . . . . 9  |-  ( ph  ->  ( ( B ^
2 )  =  0  <-> 
B  =  0 ) )
109biimpa 470 . . . . . . . 8  |-  ( (
ph  /\  ( B ^ 2 )  =  0 )  ->  B  =  0 )
111, 10syldan 456 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  B  =  0 )
1211oveq2d 5890 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ( A  -  B
)  =  ( A  -  0 ) )
132adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  A  e.  ZZ )
1413zcnd 10134 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  A  e.  CC )
1514subid1d 9162 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ( A  -  0 )  =  A )
1612, 15eqtrd 2328 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( A  -  B
)  =  A )
1716oveq1d 5889 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( A  -  B )  /  M
)  =  ( A  /  M ) )
185simprd 449 . . . . 5  |-  ( ph  ->  ( ( A  -  B )  /  M
)  e.  ZZ )
1918adantr 451 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( A  -  B )  /  M
)  e.  ZZ )
2017, 19eqeltrrd 2371 . . 3  |-  ( (
ph  /\  ps )  ->  ( A  /  M
)  e.  ZZ )
213nnzd 10132 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
223nnne0d 9806 . . . . 5  |-  ( ph  ->  M  =/=  0 )
23 dvdsval2 12550 . . . . 5  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  A  e.  ZZ )  ->  ( M  ||  A  <->  ( A  /  M )  e.  ZZ ) )
2421, 22, 2, 23syl3anc 1182 . . . 4  |-  ( ph  ->  ( M  ||  A  <->  ( A  /  M )  e.  ZZ ) )
2524adantr 451 . . 3  |-  ( (
ph  /\  ps )  ->  ( M  ||  A  <->  ( A  /  M )  e.  ZZ ) )
2620, 25mpbird 223 . 2  |-  ( (
ph  /\  ps )  ->  M  ||  A )
2721adantr 451 . . 3  |-  ( (
ph  /\  ps )  ->  M  e.  ZZ )
28 dvdssq 12755 . . 3  |-  ( ( M  e.  ZZ  /\  A  e.  ZZ )  ->  ( M  ||  A  <->  ( M ^ 2 ) 
||  ( A ^
2 ) ) )
2927, 13, 28syl2anc 642 . 2  |-  ( (
ph  /\  ps )  ->  ( M  ||  A  <->  ( M ^ 2 ) 
||  ( A ^
2 ) ) )
3026, 29mpbid 201 1  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  ||  ( A ^ 2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039  (class class class)co 5874   CCcc 8751   0cc0 8753    + caddc 8756    - cmin 9053    / cdiv 9439   NNcn 9762   2c2 9811   ZZcz 10040    mod cmo 10989   ^cexp 11120    || cdivides 12547
This theorem is referenced by:  4sqlem16  13023  2sqlem8a  20626
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-dvds 12548  df-gcd 12702
  Copyright terms: Public domain W3C validator