HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oai Unicode version

Theorem 5oai 22232
Description: Orthoarguesian law 5OA. This 8-variable inference is called 5OA because it can be converted to a 5-variable equation (see Quantum Logic Explorer). (Contributed by NM, 5-May-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oa.1  |-  A  e. 
CH
5oa.2  |-  B  e. 
CH
5oa.3  |-  C  e. 
CH
5oa.4  |-  D  e. 
CH
5oa.5  |-  F  e. 
CH
5oa.6  |-  G  e. 
CH
5oa.7  |-  R  e. 
CH
5oa.8  |-  S  e. 
CH
5oa.9  |-  A  C_  ( _|_ `  B )
5oa.10  |-  C  C_  ( _|_ `  D )
5oa.11  |-  F  C_  ( _|_ `  G )
5oa.12  |-  R  C_  ( _|_ `  S )
Assertion
Ref Expression
5oai  |-  ( ( ( A  vH  B
)  i^i  ( C  vH  D ) )  i^i  ( ( F  vH  G )  i^i  ( R  vH  S ) ) )  C_  ( B  vH  ( A  i^i  ( C  vH  ( ( ( ( A  vH  C
)  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  i^i  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) ) ) ) ) )

Proof of Theorem 5oai
StepHypRef Expression
1 5oa.9 . . . . . 6  |-  A  C_  ( _|_ `  B )
2 5oa.1 . . . . . . 7  |-  A  e. 
CH
3 5oa.2 . . . . . . 7  |-  B  e. 
CH
42, 3osumi 22213 . . . . . 6  |-  ( A 
C_  ( _|_ `  B
)  ->  ( A  +H  B )  =  ( A  vH  B ) )
51, 4ax-mp 10 . . . . 5  |-  ( A  +H  B )  =  ( A  vH  B
)
6 5oa.10 . . . . . 6  |-  C  C_  ( _|_ `  D )
7 5oa.3 . . . . . . 7  |-  C  e. 
CH
8 5oa.4 . . . . . . 7  |-  D  e. 
CH
97, 8osumi 22213 . . . . . 6  |-  ( C 
C_  ( _|_ `  D
)  ->  ( C  +H  D )  =  ( C  vH  D ) )
106, 9ax-mp 10 . . . . 5  |-  ( C  +H  D )  =  ( C  vH  D
)
115, 10ineq12i 3369 . . . 4  |-  ( ( A  +H  B )  i^i  ( C  +H  D ) )  =  ( ( A  vH  B )  i^i  ( C  vH  D ) )
12 5oa.11 . . . . . 6  |-  F  C_  ( _|_ `  G )
13 5oa.5 . . . . . . 7  |-  F  e. 
CH
14 5oa.6 . . . . . . 7  |-  G  e. 
CH
1513, 14osumi 22213 . . . . . 6  |-  ( F 
C_  ( _|_ `  G
)  ->  ( F  +H  G )  =  ( F  vH  G ) )
1612, 15ax-mp 10 . . . . 5  |-  ( F  +H  G )  =  ( F  vH  G
)
17 5oa.12 . . . . . 6  |-  R  C_  ( _|_ `  S )
18 5oa.7 . . . . . . 7  |-  R  e. 
CH
19 5oa.8 . . . . . . 7  |-  S  e. 
CH
2018, 19osumi 22213 . . . . . 6  |-  ( R 
C_  ( _|_ `  S
)  ->  ( R  +H  S )  =  ( R  vH  S ) )
2117, 20ax-mp 10 . . . . 5  |-  ( R  +H  S )  =  ( R  vH  S
)
2216, 21ineq12i 3369 . . . 4  |-  ( ( F  +H  G )  i^i  ( R  +H  S ) )  =  ( ( F  vH  G )  i^i  ( R  vH  S ) )
2311, 22ineq12i 3369 . . 3  |-  ( ( ( A  +H  B
)  i^i  ( C  +H  D ) )  i^i  ( ( F  +H  G )  i^i  ( R  +H  S ) ) )  =  ( ( ( A  vH  B
)  i^i  ( C  vH  D ) )  i^i  ( ( F  vH  G )  i^i  ( R  vH  S ) ) )
242chshii 21799 . . . 4  |-  A  e.  SH
253chshii 21799 . . . 4  |-  B  e.  SH
267chshii 21799 . . . 4  |-  C  e.  SH
278chshii 21799 . . . 4  |-  D  e.  SH
2813chshii 21799 . . . 4  |-  F  e.  SH
2914chshii 21799 . . . 4  |-  G  e.  SH
3018chshii 21799 . . . 4  |-  R  e.  SH
3119chshii 21799 . . . 4  |-  S  e.  SH
3224, 25, 26, 27, 28, 29, 30, 315oalem7 22231 . . 3  |-  ( ( ( A  +H  B
)  i^i  ( C  +H  D ) )  i^i  ( ( F  +H  G )  i^i  ( R  +H  S ) ) )  C_  ( B  +H  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) ) )
3323, 32eqsstr3i 3210 . 2  |-  ( ( ( A  vH  B
)  i^i  ( C  vH  D ) )  i^i  ( ( F  vH  G )  i^i  ( R  vH  S ) ) )  C_  ( B  +H  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) ) )
3424, 26shscli 21888 . . . . . . . . 9  |-  ( A  +H  C )  e.  SH
3525, 27shscli 21888 . . . . . . . . 9  |-  ( B  +H  D )  e.  SH
3634, 35shincli 21933 . . . . . . . 8  |-  ( ( A  +H  C )  i^i  ( B  +H  D ) )  e.  SH
3724, 30shscli 21888 . . . . . . . . . 10  |-  ( A  +H  R )  e.  SH
3825, 31shscli 21888 . . . . . . . . . 10  |-  ( B  +H  S )  e.  SH
3937, 38shincli 21933 . . . . . . . . 9  |-  ( ( A  +H  R )  i^i  ( B  +H  S ) )  e.  SH
4026, 30shscli 21888 . . . . . . . . . 10  |-  ( C  +H  R )  e.  SH
4127, 31shscli 21888 . . . . . . . . . 10  |-  ( D  +H  S )  e.  SH
4240, 41shincli 21933 . . . . . . . . 9  |-  ( ( C  +H  R )  i^i  ( D  +H  S ) )  e.  SH
4339, 42shscli 21888 . . . . . . . 8  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S ) ) )  e.  SH
4436, 43shincli 21933 . . . . . . 7  |-  ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  e.  SH
4524, 28shscli 21888 . . . . . . . . . 10  |-  ( A  +H  F )  e.  SH
4625, 29shscli 21888 . . . . . . . . . 10  |-  ( B  +H  G )  e.  SH
4745, 46shincli 21933 . . . . . . . . 9  |-  ( ( A  +H  F )  i^i  ( B  +H  G ) )  e.  SH
4828, 30shscli 21888 . . . . . . . . . . 11  |-  ( F  +H  R )  e.  SH
4929, 31shscli 21888 . . . . . . . . . . 11  |-  ( G  +H  S )  e.  SH
5048, 49shincli 21933 . . . . . . . . . 10  |-  ( ( F  +H  R )  i^i  ( G  +H  S ) )  e.  SH
5139, 50shscli 21888 . . . . . . . . 9  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  e.  SH
5247, 51shincli 21933 . . . . . . . 8  |-  ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  e.  SH
5326, 28shscli 21888 . . . . . . . . . 10  |-  ( C  +H  F )  e.  SH
5427, 29shscli 21888 . . . . . . . . . 10  |-  ( D  +H  G )  e.  SH
5553, 54shincli 21933 . . . . . . . . 9  |-  ( ( C  +H  F )  i^i  ( D  +H  G ) )  e.  SH
5642, 50shscli 21888 . . . . . . . . 9  |-  ( ( ( C  +H  R
)  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  e.  SH
5755, 56shincli 21933 . . . . . . . 8  |-  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  e.  SH
5852, 57shscli 21888 . . . . . . 7  |-  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) )  e.  SH
5944, 58shincli 21933 . . . . . 6  |-  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S ) ) ) )  i^i  (
( ( ( A  +H  F )  i^i  ( B  +H  G
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) )  +H  ( ( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) )  e.  SH
6026, 59shscli 21888 . . . . 5  |-  ( C  +H  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) )  e.  SH
6124, 60shincli 21933 . . . 4  |-  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) )  e.  SH
6225, 61shsleji 21941 . . 3  |-  ( B  +H  ( A  i^i  ( C  +H  (
( ( ( A  +H  C )  i^i  ( B  +H  D
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S
) ) ) )  i^i  ( ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  +H  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) ) ) ) )  C_  ( B  vH  ( A  i^i  ( C  +H  (
( ( ( A  +H  C )  i^i  ( B  +H  D
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S
) ) ) )  i^i  ( ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  +H  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) ) ) ) )
6326, 59shsleji 21941 . . . . . 6  |-  ( C  +H  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) )  C_  ( C  vH  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) )
642, 7chsleji 22029 . . . . . . . . . 10  |-  ( A  +H  C )  C_  ( A  vH  C )
653, 8chsleji 22029 . . . . . . . . . 10  |-  ( B  +H  D )  C_  ( B  vH  D )
66 ss2in 3397 . . . . . . . . . 10  |-  ( ( ( A  +H  C
)  C_  ( A  vH  C )  /\  ( B  +H  D )  C_  ( B  vH  D ) )  ->  ( ( A  +H  C )  i^i  ( B  +H  D
) )  C_  (
( A  vH  C
)  i^i  ( B  vH  D ) ) )
6764, 65, 66mp2an 656 . . . . . . . . 9  |-  ( ( A  +H  C )  i^i  ( B  +H  D ) )  C_  ( ( A  vH  C )  i^i  ( B  vH  D ) )
6839, 42shsleji 21941 . . . . . . . . . 10  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S ) ) )  C_  ( (
( A  +H  R
)  i^i  ( B  +H  S ) )  vH  ( ( C  +H  R )  i^i  ( D  +H  S ) ) )
697, 18chsleji 22029 . . . . . . . . . . . . 13  |-  ( C  +H  R )  C_  ( C  vH  R )
708, 19chsleji 22029 . . . . . . . . . . . . 13  |-  ( D  +H  S )  C_  ( D  vH  S )
71 ss2in 3397 . . . . . . . . . . . . 13  |-  ( ( ( C  +H  R
)  C_  ( C  vH  R )  /\  ( D  +H  S )  C_  ( D  vH  S ) )  ->  ( ( C  +H  R )  i^i  ( D  +H  S
) )  C_  (
( C  vH  R
)  i^i  ( D  vH  S ) ) )
7269, 70, 71mp2an 656 . . . . . . . . . . . 12  |-  ( ( C  +H  R )  i^i  ( D  +H  S ) )  C_  ( ( C  vH  R )  i^i  ( D  vH  S ) )
7326, 30shjshcli 21947 . . . . . . . . . . . . . 14  |-  ( C  vH  R )  e.  SH
7427, 31shjshcli 21947 . . . . . . . . . . . . . 14  |-  ( D  vH  S )  e.  SH
7573, 74shincli 21933 . . . . . . . . . . . . 13  |-  ( ( C  vH  R )  i^i  ( D  vH  S ) )  e.  SH
7642, 75, 39shlej2i 21950 . . . . . . . . . . . 12  |-  ( ( ( C  +H  R
)  i^i  ( D  +H  S ) )  C_  ( ( C  vH  R )  i^i  ( D  vH  S ) )  ->  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  vH  ( ( C  +H  R )  i^i  ( D  +H  S ) ) )  C_  ( (
( A  +H  R
)  i^i  ( B  +H  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S ) ) ) )
7772, 76ax-mp 10 . . . . . . . . . . 11  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  vH  ( ( C  +H  R )  i^i  ( D  +H  S ) ) )  C_  ( (
( A  +H  R
)  i^i  ( B  +H  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S ) ) )
782, 18chsleji 22029 . . . . . . . . . . . . 13  |-  ( A  +H  R )  C_  ( A  vH  R )
793, 19chsleji 22029 . . . . . . . . . . . . 13  |-  ( B  +H  S )  C_  ( B  vH  S )
80 ss2in 3397 . . . . . . . . . . . . 13  |-  ( ( ( A  +H  R
)  C_  ( A  vH  R )  /\  ( B  +H  S )  C_  ( B  vH  S ) )  ->  ( ( A  +H  R )  i^i  ( B  +H  S
) )  C_  (
( A  vH  R
)  i^i  ( B  vH  S ) ) )
8178, 79, 80mp2an 656 . . . . . . . . . . . 12  |-  ( ( A  +H  R )  i^i  ( B  +H  S ) )  C_  ( ( A  vH  R )  i^i  ( B  vH  S ) )
8224, 30shjshcli 21947 . . . . . . . . . . . . . 14  |-  ( A  vH  R )  e.  SH
8325, 31shjshcli 21947 . . . . . . . . . . . . . 14  |-  ( B  vH  S )  e.  SH
8482, 83shincli 21933 . . . . . . . . . . . . 13  |-  ( ( A  vH  R )  i^i  ( B  vH  S ) )  e.  SH
8539, 84, 75shlej1i 21949 . . . . . . . . . . . 12  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  C_  ( ( A  vH  R )  i^i  ( B  vH  S ) )  ->  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S ) ) )  C_  ( (
( A  vH  R
)  i^i  ( B  vH  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S ) ) ) )
8681, 85ax-mp 10 . . . . . . . . . . 11  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S ) ) )  C_  ( (
( A  vH  R
)  i^i  ( B  vH  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S ) ) )
8777, 86sstri 3189 . . . . . . . . . 10  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  vH  ( ( C  +H  R )  i^i  ( D  +H  S ) ) )  C_  ( (
( A  vH  R
)  i^i  ( B  vH  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S ) ) )
8868, 87sstri 3189 . . . . . . . . 9  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S ) ) )  C_  ( (
( A  vH  R
)  i^i  ( B  vH  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S ) ) )
89 ss2in 3397 . . . . . . . . 9  |-  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) ) 
C_  ( ( A  vH  C )  i^i  ( B  vH  D
) )  /\  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S
) ) )  C_  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  ->  ( (
( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  C_  ( (
( A  vH  C
)  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) ) )
9067, 88, 89mp2an 656 . . . . . . . 8  |-  ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  C_  ( (
( A  vH  C
)  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )
9152, 57shsleji 21941 . . . . . . . . 9  |-  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) )  C_  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  vH  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) )
927, 13chsleji 22029 . . . . . . . . . . . . 13  |-  ( C  +H  F )  C_  ( C  vH  F )
938, 14chsleji 22029 . . . . . . . . . . . . 13  |-  ( D  +H  G )  C_  ( D  vH  G )
94 ss2in 3397 . . . . . . . . . . . . 13  |-  ( ( ( C  +H  F
)  C_  ( C  vH  F )  /\  ( D  +H  G )  C_  ( D  vH  G ) )  ->  ( ( C  +H  F )  i^i  ( D  +H  G
) )  C_  (
( C  vH  F
)  i^i  ( D  vH  G ) ) )
9592, 93, 94mp2an 656 . . . . . . . . . . . 12  |-  ( ( C  +H  F )  i^i  ( D  +H  G ) )  C_  ( ( C  vH  F )  i^i  ( D  vH  G ) )
9642, 50shsleji 21941 . . . . . . . . . . . . 13  |-  ( ( ( C  +H  R
)  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  C_  ( (
( C  +H  R
)  i^i  ( D  +H  S ) )  vH  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )
9713, 18chsleji 22029 . . . . . . . . . . . . . . . 16  |-  ( F  +H  R )  C_  ( F  vH  R )
9814, 19chsleji 22029 . . . . . . . . . . . . . . . 16  |-  ( G  +H  S )  C_  ( G  vH  S )
99 ss2in 3397 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  +H  R
)  C_  ( F  vH  R )  /\  ( G  +H  S )  C_  ( G  vH  S ) )  ->  ( ( F  +H  R )  i^i  ( G  +H  S
) )  C_  (
( F  vH  R
)  i^i  ( G  vH  S ) ) )
10097, 98, 99mp2an 656 . . . . . . . . . . . . . . 15  |-  ( ( F  +H  R )  i^i  ( G  +H  S ) )  C_  ( ( F  vH  R )  i^i  ( G  vH  S ) )
10128, 30shjshcli 21947 . . . . . . . . . . . . . . . . 17  |-  ( F  vH  R )  e.  SH
10229, 31shjshcli 21947 . . . . . . . . . . . . . . . . 17  |-  ( G  vH  S )  e.  SH
103101, 102shincli 21933 . . . . . . . . . . . . . . . 16  |-  ( ( F  vH  R )  i^i  ( G  vH  S ) )  e.  SH
10450, 103, 42shlej2i 21950 . . . . . . . . . . . . . . 15  |-  ( ( ( F  +H  R
)  i^i  ( G  +H  S ) )  C_  ( ( F  vH  R )  i^i  ( G  vH  S ) )  ->  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  vH  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  C_  ( (
( C  +H  R
)  i^i  ( D  +H  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )
105100, 104ax-mp 10 . . . . . . . . . . . . . 14  |-  ( ( ( C  +H  R
)  i^i  ( D  +H  S ) )  vH  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  C_  ( (
( C  +H  R
)  i^i  ( D  +H  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )
10642, 75, 103shlej1i 21949 . . . . . . . . . . . . . . 15  |-  ( ( ( C  +H  R
)  i^i  ( D  +H  S ) )  C_  ( ( C  vH  R )  i^i  ( D  vH  S ) )  ->  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )  C_  ( (
( C  vH  R
)  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )
10772, 106ax-mp 10 . . . . . . . . . . . . . 14  |-  ( ( ( C  +H  R
)  i^i  ( D  +H  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )  C_  ( (
( C  vH  R
)  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )
108105, 107sstri 3189 . . . . . . . . . . . . 13  |-  ( ( ( C  +H  R
)  i^i  ( D  +H  S ) )  vH  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  C_  ( (
( C  vH  R
)  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )
10996, 108sstri 3189 . . . . . . . . . . . 12  |-  ( ( ( C  +H  R
)  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  C_  ( (
( C  vH  R
)  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )
110 ss2in 3397 . . . . . . . . . . . 12  |-  ( ( ( ( C  +H  F )  i^i  ( D  +H  G ) ) 
C_  ( ( C  vH  F )  i^i  ( D  vH  G
) )  /\  (
( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) )  C_  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )  ->  ( (
( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  C_  ( (
( C  vH  F
)  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) )
11195, 109, 110mp2an 656 . . . . . . . . . . 11  |-  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  C_  ( (
( C  vH  F
)  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )
1127, 13chjcli 22028 . . . . . . . . . . . . . . 15  |-  ( C  vH  F )  e. 
CH
1138, 14chjcli 22028 . . . . . . . . . . . . . . 15  |-  ( D  vH  G )  e. 
CH
114112, 113chincli 22031 . . . . . . . . . . . . . 14  |-  ( ( C  vH  F )  i^i  ( D  vH  G ) )  e. 
CH
115114chshii 21799 . . . . . . . . . . . . 13  |-  ( ( C  vH  F )  i^i  ( D  vH  G ) )  e.  SH
11675, 103shjshcli 21947 . . . . . . . . . . . . 13  |-  ( ( ( C  vH  R
)  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )  e.  SH
117115, 116shincli 21933 . . . . . . . . . . . 12  |-  ( ( ( C  vH  F
)  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )  e.  SH
11857, 117, 52shlej2i 21950 . . . . . . . . . . 11  |-  ( ( ( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  C_  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  ->  (
( ( ( A  +H  F )  i^i  ( B  +H  G
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) )  vH  ( ( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) )  C_  (
( ( ( A  +H  F )  i^i  ( B  +H  G
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) )  vH  ( ( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) ) )
119111, 118ax-mp 10 . . . . . . . . . 10  |-  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  vH  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) )  C_  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  vH  ( ( ( C  vH  F
)  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) )
1202, 13chsleji 22029 . . . . . . . . . . . . 13  |-  ( A  +H  F )  C_  ( A  vH  F )
1213, 14chsleji 22029 . . . . . . . . . . . . 13  |-  ( B  +H  G )  C_  ( B  vH  G )
122 ss2in 3397 . . . . . . . . . . . . 13  |-  ( ( ( A  +H  F
)  C_  ( A  vH  F )  /\  ( B  +H  G )  C_  ( B  vH  G ) )  ->  ( ( A  +H  F )  i^i  ( B  +H  G
) )  C_  (
( A  vH  F
)  i^i  ( B  vH  G ) ) )
123120, 121, 122mp2an 656 . . . . . . . . . . . 12  |-  ( ( A  +H  F )  i^i  ( B  +H  G ) )  C_  ( ( A  vH  F )  i^i  ( B  vH  G ) )
12439, 50shsleji 21941 . . . . . . . . . . . . 13  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  C_  ( (
( A  +H  R
)  i^i  ( B  +H  S ) )  vH  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )
12550, 103, 39shlej2i 21950 . . . . . . . . . . . . . . 15  |-  ( ( ( F  +H  R
)  i^i  ( G  +H  S ) )  C_  ( ( F  vH  R )  i^i  ( G  vH  S ) )  ->  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  vH  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  C_  ( (
( A  +H  R
)  i^i  ( B  +H  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )
126100, 125ax-mp 10 . . . . . . . . . . . . . 14  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  vH  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  C_  ( (
( A  +H  R
)  i^i  ( B  +H  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )
12739, 84, 103shlej1i 21949 . . . . . . . . . . . . . . 15  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  C_  ( ( A  vH  R )  i^i  ( B  vH  S ) )  ->  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )  C_  ( (
( A  vH  R
)  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )
12881, 127ax-mp 10 . . . . . . . . . . . . . 14  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )  C_  ( (
( A  vH  R
)  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )
129126, 128sstri 3189 . . . . . . . . . . . . 13  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  vH  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  C_  ( (
( A  vH  R
)  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )
130124, 129sstri 3189 . . . . . . . . . . . 12  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  C_  ( (
( A  vH  R
)  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )
131 ss2in 3397 . . . . . . . . . . . 12  |-  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) ) 
C_  ( ( A  vH  F )  i^i  ( B  vH  G
) )  /\  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) )  C_  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )  ->  ( (
( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  C_  ( (
( A  vH  F
)  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) )
132123, 130, 131mp2an 656 . . . . . . . . . . 11  |-  ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  C_  ( (
( A  vH  F
)  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )
1332, 13chjcli 22028 . . . . . . . . . . . . . . 15  |-  ( A  vH  F )  e. 
CH
1343, 14chjcli 22028 . . . . . . . . . . . . . . 15  |-  ( B  vH  G )  e. 
CH
135133, 134chincli 22031 . . . . . . . . . . . . . 14  |-  ( ( A  vH  F )  i^i  ( B  vH  G ) )  e. 
CH
136135chshii 21799 . . . . . . . . . . . . 13  |-  ( ( A  vH  F )  i^i  ( B  vH  G ) )  e.  SH
13784, 103shjshcli 21947 . . . . . . . . . . . . 13  |-  ( ( ( A  vH  R
)  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )  e.  SH
138136, 137shincli 21933 . . . . . . . . . . . 12  |-  ( ( ( A  vH  F
)  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )  e.  SH
13952, 138, 117shlej1i 21949 . . . . . . . . . . 11  |-  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  C_  (
( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  ->  (
( ( ( A  +H  F )  i^i  ( B  +H  G
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) )  vH  ( ( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) )  C_  (
( ( ( A  vH  F )  i^i  ( B  vH  G
) )  i^i  (
( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S
) ) ) )  vH  ( ( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) ) )
140132, 139ax-mp 10 . . . . . . . . . 10  |-  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) )  C_  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )  vH  ( ( ( C  vH  F
)  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) )
141119, 140sstri 3189 . . . . . . . . 9  |-  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  vH  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) )  C_  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )  vH  ( ( ( C  vH  F
)  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) )
14291, 141sstri 3189 . . . . . . . 8  |-  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) )  C_  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )  vH  ( ( ( C  vH  F
)  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) )
143 ss2in 3397 . . . . . . . 8  |-  ( ( ( ( ( A  +H  C )  i^i  ( B  +H  D
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S
) ) ) ) 
C_  ( ( ( A  vH  C )  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  /\  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) )  C_  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )  vH  ( ( ( C  vH  F
)  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) ) )  -> 
( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) 
C_  ( ( ( ( A  vH  C
)  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  i^i  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) ) ) )
14490, 142, 143mp2an 656 . . . . . . 7  |-  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S ) ) ) )  i^i  (
( ( ( A  +H  F )  i^i  ( B  +H  G
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) )  +H  ( ( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) )  C_  ( ( ( ( A  vH  C )  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  i^i  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) ) )
1452, 7chjcli 22028 . . . . . . . . . . . 12  |-  ( A  vH  C )  e. 
CH
1463, 8chjcli 22028 . . . . . . . . . . . 12  |-  ( B  vH  D )  e. 
CH
147145, 146chincli 22031 . . . . . . . . . . 11  |-  ( ( A  vH  C )  i^i  ( B  vH  D ) )  e. 
CH
14884, 75shjcli 21946 . . . . . . . . . . 11  |-  ( ( ( A  vH  R
)  i^i  ( B  vH  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S ) ) )  e.  CH
149147, 148chincli 22031 . . . . . . . . . 10  |-  ( ( ( A  vH  C
)  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  e.  CH
150149chshii 21799 . . . . . . . . 9  |-  ( ( ( A  vH  C
)  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  e.  SH
151138, 117shjshcli 21947 . . . . . . . . 9  |-  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) )  e.  SH
152150, 151shincli 21933 . . . . . . . 8  |-  ( ( ( ( A  vH  C )  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S ) ) ) )  i^i  (
( ( ( A  vH  F )  i^i  ( B  vH  G
) )  i^i  (
( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S
) ) ) )  vH  ( ( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) ) )  e.  SH
15359, 152, 26shlej2i 21950 . . . . . . 7  |-  ( ( ( ( ( A  +H  C )  i^i  ( B  +H  D
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S
) ) ) )  i^i  ( ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  +H  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) )  C_  ( ( ( ( A  vH  C )  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  i^i  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) ) )  ->  ( C  vH  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) )  C_  ( C  vH  ( ( ( ( A  vH  C )  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  i^i  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) ) ) ) )
154144, 153ax-mp 10 . . . . . 6  |-  ( C  vH  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) )  C_  ( C  vH  ( ( ( ( A  vH  C )  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  i^i  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) ) ) )
15563, 154sstri 3189 . . . . 5  |-  ( C  +H  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) )  C_  ( C  vH  ( ( ( ( A  vH  C )  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  i^i  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) ) ) )
156 sslin 3396 . . . . 5  |-  ( ( C  +H  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S ) ) ) )  i^i  (
( ( ( A  +H  F )  i^i  ( B  +H  G
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) )  +H  ( ( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) ) ) 
C_  ( C  vH  ( ( ( ( A  vH  C )  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  i^i  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) ) ) )  ->  ( A  i^i  ( C  +H  (
( ( ( A  +H  C )  i^i  ( B  +H  D
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S
) ) ) )  i^i  ( ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  +H  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) ) ) )  C_  ( A  i^i  ( C  vH  (
( ( ( A  vH  C )  i^i  ( B  vH  D
) )  i^i  (
( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S
) ) ) )  i^i  ( ( ( ( A  vH  F
)  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )  vH  ( ( ( C  vH  F
)  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) ) ) ) ) )
157155, 156ax-mp 10 . . . 4  |-  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) )  C_  ( A  i^i  ( C  vH  ( ( ( ( A  vH  C )  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  i^i  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) ) ) ) )
15826, 152shjshcli 21947 . . . . . 6  |-  ( C  vH  ( ( ( ( A  vH  C
)  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  i^i  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) ) ) )  e.  SH
15924, 158shincli 21933 . . . . 5  |-  ( A  i^i  ( C  vH  ( ( ( ( A  vH  C )  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  i^i  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) ) ) ) )  e.  SH
16061, 159, 25shlej2i 21950 . . . 4  |-  ( ( A  i^i  ( C  +H  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) )  C_  ( A  i^i  ( C  vH  ( ( ( ( A  vH  C )  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  i^i  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) ) ) ) )  ->  ( B  vH  ( A  i^i  ( C  +H  (
( ( ( A  +H  C )  i^i  ( B  +H  D
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S
) ) ) )  i^i  ( ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  +H  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) ) ) ) )  C_  ( B  vH  ( A  i^i  ( C  vH  (
( ( ( A  vH  C )  i^i  ( B  vH  D
) )  i^i  (
( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S
) ) ) )  i^i  ( ( ( ( A  vH  F
)  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )  vH  ( ( ( C  vH  F
)  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) ) ) ) ) ) )
161157, 160ax-mp 10 . . 3  |-  ( B  vH  ( A  i^i  ( C  +H  (
( ( ( A  +H  C )  i^i  ( B  +H  D
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S
) ) ) )  i^i  ( ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  +H  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) ) ) ) )  C_  ( B  vH  ( A  i^i  ( C  vH  (
( ( ( A  vH  C )  i^i  ( B  vH  D
) )  i^i  (
( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S
) ) ) )  i^i  ( ( ( ( A  vH  F
)  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )  vH  ( ( ( C  vH  F
)  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) ) ) ) ) )
16262, 161sstri 3189 . 2  |-  ( B  +H  ( A  i^i  ( C  +H  (
( ( ( A  +H  C )  i^i  ( B  +H  D
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S
) ) ) )  i^i  ( ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  +H  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) ) ) ) )  C_  ( B  vH  ( A  i^i  ( C  vH  (
( ( ( A  vH  C )  i^i  ( B  vH  D
) )  i^i  (
( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S
) ) ) )  i^i  ( ( ( ( A  vH  F
)  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )  vH  ( ( ( C  vH  F
)  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) ) ) ) ) )
16333, 162sstri 3189 1  |-  ( ( ( A  vH  B
)  i^i  ( C  vH  D ) )  i^i  ( ( F  vH  G )  i^i  ( R  vH  S ) ) )  C_  ( B  vH  ( A  i^i  ( C  vH  ( ( ( ( A  vH  C
)  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  i^i  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1628    e. wcel 1688    i^i cin 3152    C_ wss 3153   ` cfv 5221  (class class class)co 5819   CHcch 21501   _|_cort 21502    +H cph 21503    vH chj 21505
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337  ax-cc 8056  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811  ax-mulf 8812  ax-hilex 21571  ax-hfvadd 21572  ax-hvcom 21573  ax-hvass 21574  ax-hv0cl 21575  ax-hvaddid 21576  ax-hfvmul 21577  ax-hvmulid 21578  ax-hvmulass 21579  ax-hvdistr1 21580  ax-hvdistr2 21581  ax-hvmul0 21582  ax-hfi 21650  ax-his1 21653  ax-his2 21654  ax-his3 21655  ax-his4 21656  ax-hcompl 21773
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-of 6039  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6655  df-map 6769  df-pm 6770  df-ixp 6813  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-fi 7160  df-sup 7189  df-oi 7220  df-card 7567  df-acn 7570  df-cda 7789  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-4 9801  df-5 9802  df-6 9803  df-7 9804  df-8 9805  df-9 9806  df-10 9807  df-n0 9961  df-z 10020  df-dec 10120  df-uz 10226  df-q 10312  df-rp 10350  df-xneg 10447  df-xadd 10448  df-xmul 10449  df-ioo 10654  df-ico 10656  df-icc 10657  df-fz 10777  df-fzo 10865  df-fl 10919  df-seq 11041  df-exp 11099  df-hash 11332  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-clim 11956  df-rlim 11957  df-sum 12153  df-struct 13144  df-ndx 13145  df-slot 13146  df-base 13147  df-sets 13148  df-ress 13149  df-plusg 13215  df-mulr 13216  df-starv 13217  df-sca 13218  df-vsca 13219  df-tset 13221  df-ple 13222  df-ds 13224  df-hom 13226  df-cco 13227  df-rest 13321  df-topn 13322  df-topgen 13338  df-pt 13339  df-prds 13342  df-xrs 13397  df-0g 13398  df-gsum 13399  df-qtop 13404  df-imas 13405  df-xps 13407  df-mre 13482  df-mrc 13483  df-acs 13485  df-mnd 14361  df-submnd 14410  df-mulg 14486  df-cntz 14787  df-cmn 15085  df-xmet 16367  df-met 16368  df-bl 16369  df-mopn 16370  df-cnfld 16372  df-top 16630  df-bases 16632  df-topon 16633  df-topsp 16634  df-cld 16750  df-ntr 16751  df-cls 16752  df-nei 16829  df-cn 16951  df-cnp 16952  df-lm 16953  df-haus 17037  df-tx 17251  df-hmeo 17440  df-fbas 17514  df-fg 17515  df-fil 17535  df-fm 17627  df-flim 17628  df-flf 17629  df-xms 17879  df-ms 17880  df-tms 17881  df-cfil 18675  df-cau 18676  df-cmet 18677  df-grpo 20850  df-gid 20851  df-ginv 20852  df-gdiv 20853  df-ablo 20941  df-subgo 20961  df-vc 21094  df-nv 21140  df-va 21143  df-ba 21144  df-sm 21145  df-0v 21146  df-vs 21147  df-nmcv 21148  df-ims 21149  df-dip 21266  df-ssp 21290  df-ph 21383  df-cbn 21434  df-hnorm 21540  df-hba 21541  df-hvsub 21543  df-hlim 21544  df-hcau 21545  df-sh 21778  df-ch 21793  df-oc 21823  df-ch0 21824  df-shs 21879  df-chj 21881  df-pjh 21966
  Copyright terms: Public domain W3C validator