MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6p1e7 Structured version   Unicode version

Theorem 6p1e7 10109
Description: 6 + 1 = 7. (Contributed by Mario Carneiro, 18-Apr-2015.)
Assertion
Ref Expression
6p1e7  |-  ( 6  +  1 )  =  7

Proof of Theorem 6p1e7
StepHypRef Expression
1 df-7 10065 . 2  |-  7  =  ( 6  +  1 )
21eqcomi 2442 1  |-  ( 6  +  1 )  =  7
Colors of variables: wff set class
Syntax hints:    = wceq 1653  (class class class)co 6083   1c1 8993    + caddc 8995   6c6 10055   7c7 10056
This theorem is referenced by:  9t8e72  10485  s7len  11861  37prm  13445  163prm  13449  317prm  13450  631prm  13451  1259lem1  13452  1259lem3  13454  1259lem4  13455  1259lem5  13456  2503lem1  13458  2503lem2  13459  2503lem3  13460  2503prm  13461  4001lem1  13462  4001lem4  13465  4001prm  13466  log2ublem3  20790  log2ub  20791
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-cleq 2431  df-7 10065
  Copyright terms: Public domain W3C validator